STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
FB00_09255acyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology. (396 aa)    
Predicted Functional Partners:
FB00_15950
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.993
FB00_14350
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.943
FB00_11130
Electron transfer flavoprotein subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.841
FB00_11125
Electron transfer flavoprotein subunit beta; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.832
FB00_12510
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.827
FB00_04485
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.813
FB00_12515
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.776
FB00_15955
acetyl-CoA acetyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.772
FB00_10100
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
 
 0.765
FB00_08015
acetyl-CoA acetyltransferase; Catalyzes the synthesis of acetoacetyl coenzyme A from two molecules of acetyl coenzyme A. It can also act as a thiolase, catalyzing the reverse reaction and generating two-carbon units from the four-carbon product of fatty acid oxidation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the thiolase-like superfamily. Thiolase family.
  
 0.729
Your Current Organism:
Cellulosimicrobium funkei
NCBI taxonomy Id: 264251
Other names: ATCC BAA-886, C. funkei, CCUG 50705, Cellulosimicrobium funkei Brown et al. 2006, Cellulosimicrobium sp. AR6, Cellulosimicrobium sp. AR8, DSM 16025, JCM 14302, NBRC 104118, NCTC 13516, strain W6122
Server load: low (30%) [HD]