node1 | node2 | node1 annotation | node2 annotation | score |
Moth_0064 | Moth_0934 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | Pyruvate ferredoxin/flavodoxin oxidoreductase. | 0.987 |
Moth_0064 | Moth_1593 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate; Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel- dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria. | 0.999 |
Moth_0064 | Moth_1718 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | NAD(P)-dependent iron-only hydrogenase diaphorase component flavoprotein. | 0.983 |
Moth_0064 | Moth_1867 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | Pyruvate kinase; Belongs to the pyruvate kinase family. | 0.977 |
Moth_0064 | Moth_1887 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | NADH dehydrogenase (quinone). | 0.995 |
Moth_0064 | Moth_1949 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | FAD dependent oxidoreductase. | 0.977 |
Moth_0064 | Moth_2138 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | Hypothetical protein. | 0.999 |
Moth_0064 | Moth_2276 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | Pyruvate ferredoxin/flavodoxin oxidoreductase. | 0.987 |
Moth_0064 | Moth_2277 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | Thiamine pyrophosphate enzyme; Catalyzes the ferredoxin-dependent oxidative decarboxylation of arylpyruvates. | 0.981 |
Moth_0064 | Moth_2314 | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | Respiratory-chain NADH dehydrogenase, 51 kDa subunit. | 0.970 |
Moth_0934 | Moth_0064 | Pyruvate ferredoxin/flavodoxin oxidoreductase. | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | 0.987 |
Moth_0934 | Moth_1718 | Pyruvate ferredoxin/flavodoxin oxidoreductase. | NAD(P)-dependent iron-only hydrogenase diaphorase component flavoprotein. | 0.554 |
Moth_0934 | Moth_1867 | Pyruvate ferredoxin/flavodoxin oxidoreductase. | Pyruvate kinase; Belongs to the pyruvate kinase family. | 0.783 |
Moth_0934 | Moth_1887 | Pyruvate ferredoxin/flavodoxin oxidoreductase. | NADH dehydrogenase (quinone). | 0.621 |
Moth_0934 | Moth_1949 | Pyruvate ferredoxin/flavodoxin oxidoreductase. | FAD dependent oxidoreductase. | 0.640 |
Moth_0934 | Moth_2277 | Pyruvate ferredoxin/flavodoxin oxidoreductase. | Thiamine pyrophosphate enzyme; Catalyzes the ferredoxin-dependent oxidative decarboxylation of arylpyruvates. | 0.941 |
Moth_1593 | Moth_0064 | 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate; Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel- dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria. | Pyruvate:ferredoxin (flavodoxin) oxidoreductase; Catalyzes the oxidative decarboxylation of pyruvate to acetyl-CoA and carbon dioxide. The two electrons that are generated as a result of pyruvate decarboxylation are used in the reduction of low potential ferredoxins, which provide reducing equivalents for central metabolism. Also catalyzes the reverse reaction, i.e. the synthesis of pyruvate from acetyl-CoA and carbon dioxide. Appears to function physiologically in both directions. The oxidation of pyruvate by PFOR is required to connect glycolysis and the Wood- Ljungdahl pathway of re [...] | 0.999 |
Moth_1593 | Moth_1718 | 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate; Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel- dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria. | NAD(P)-dependent iron-only hydrogenase diaphorase component flavoprotein. | 0.966 |
Moth_1593 | Moth_1867 | 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate; Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel- dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria. | Pyruvate kinase; Belongs to the pyruvate kinase family. | 0.956 |
Moth_1593 | Moth_1887 | 2-oxoacid:acceptor oxidoreductase, delta subunit, pyruvate/2-ketoisovalerate; Catalyzes the anaerobic oxidation of oxalate using a broad range of electron acceptors, including ferredoxin and the nickel- dependent carbon monoxide dehydrogenase. Does not require coenzyme A as cosubstrate. Enables anaerobic growth on oxalate which is used as energy source by the bacteria. | NADH dehydrogenase (quinone). | 0.972 |