STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KKC98018.1Cold-shock protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (118 aa)    
Predicted Functional Partners:
rpmI
50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family.
 
 
   0.958
rpmA
50S ribosomal protein L27; Involved in the peptidyltransferase reaction during translation; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family.
   
 
 0.954
rpsI
30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family.
   
 
 0.953
rpsP
30S ribosomal protein S16; Binds to lower part of 30S body where it stabilizes two domains; required for efficient assembly of 30S; in Escherichia coli this protein has nuclease activity; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS16 family.
    
 
 0.952
rplD
50S ribosomal protein L4; Forms part of the polypeptide exit tunnel.
  
 
   0.951
rpmC
50S ribosomal protein L29; One of the stabilizing components for the large ribosomal subunit; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.951
rplI
50S ribosomal protein L9; Binds to the 23S rRNA.
  
   0.950
rpmG
50S ribosomal protein L33; In Escherichia coli BM108, a mutation that results in lack of L33 synthesis had no effect on ribosome synthesis or function; there are paralogous genes in several bacterial genomes, and a CXXC motif for zinc binding and an upstream regulation region of the paralog lacking this motif that are regulated by zinc similar to other ribosomal proteins like L31; the proteins in this group lack the CXXC motif; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
   0.949
rpmB
50S ribosomal protein L28; Required for 70S ribosome assembly; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
   
   0.949
rpsE
30S ribosomal protein S5; Located at the back of the 30S subunit body where it stabilizes the conformation of the head with respect to the body. Belongs to the universal ribosomal protein uS5 family.
    
 
 0.948
Your Current Organism:
Photobacterium halotolerans
NCBI taxonomy Id: 265726
Other names: CECT 5860, DSM 18316, LMG 22194, LMG:22194, P. halotolerans, Photobacterium halotolerans Rivas et al. 2006, Photobacterium sp. MELD1, strain MACL01
Server load: low (14%) [HD]