STRINGSTRING
engB protein (Burkholderia xenovorans) - STRING interaction network
"engB" - Probable GTP-binding protein EngB in Burkholderia xenovorans
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
engBProbable GTP-binding protein EngB; Necessary for normal cell division and for the maintenance of normal septation (217 aa)    
Predicted Functional Partners:
era
GTPase Era; An essential GTPase that binds both GDP and GTP, with rapid nucleotide exchange. Plays a role in 16S rRNA processing and 30S ribosomal subunit biogenesis and possibly also in cell cycle regulation and energy metabolism (299 aa)
 
   
  0.765
obg
GTPase Obg; An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate. Plays a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control; Belongs to the TRAFAC class OBG-HflX-like GTPase superfamily. OBG GTPase family (373 aa)
 
   
  0.706
der
GTPase Der; GTPase that plays an essential role in the late steps of ribosome biogenesis (445 aa)
 
   
  0.694
Bxe_A0344
annotation not available (332 aa)
   
        0.654
lepA
Elongation factor 4; Required for accurate and efficient protein synthesis under certain stress conditions. May act as a fidelity factor of the translation reaction, by catalyzing a one-codon backward translocation of tRNAs on improperly translocated ribosomes. Back- translocation proceeds from a post-translocation (POST) complex to a pre-translocation (PRE) complex, thus giving elongation factor G a second chance to translocate the tRNAs correctly. Binds to ribosomes in a GTP-dependent manner (597 aa)
 
   
  0.645
Bxe_A0346
annotation not available (217 aa)
              0.639
ftsY
Signal recognition particle receptor FtsY; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Acts as a receptor for the complex formed by the signal recognition particle (SRP) and the ribosome-nascent chain (RNC). Interaction with SRP-RNC leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual components (385 aa)
 
 
  0.621
rplD
50S ribosomal protein L4; One of the primary rRNA binding proteins, this protein initially binds near the 5’-end of the 23S rRNA. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (206 aa)
 
   
  0.615
ffh
Signal recognition particle protein; Involved in targeting and insertion of nascent membrane proteins into the cytoplasmic membrane. Binds to the hydrophobic signal sequence of the ribosome-nascent chain (RNC) as it emerges from the ribosomes. The SRP-RNC complex is then targeted to the cytoplasmic membrane where it interacts with the SRP receptor FtsY. Interaction with FtsY leads to the transfer of the RNC complex to the Sec translocase for insertion into the membrane, the hydrolysis of GTP by both Ffh and FtsY, and the dissociation of the SRP-FtsY complex into the individual componen [...] (455 aa)
   
   
  0.598
gidA
tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG; NAD-binding protein involved in the addition of a carboxymethylaminomethyl (cmnm) group at the wobble position (U34) of certain tRNAs, forming tRNA-cmnm(5)s(2)U34; Belongs to the MnmG family (652 aa)
 
 
  0.597
Your Current Organism:
Burkholderia xenovorans
NCBI taxonomy Id: 266265
Other names: B. xenovorans LB400, Burkholderia cepacia LB400, Burkholderia fungorum LB400, Burkholderia sp. LB400, Burkholderia xenovorans, Burkholderia xenovorans LB400, Burkholderia xenovorans str. LB400, Burkholderia xenovorans strain LB400, Pseudomonas LB400, Pseudomonas sp. (strain LB400), Pseudomonas sp. LB400
Server load: low (17%) [HD]