STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
atpG_3ATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (181 aa)    
Predicted Functional Partners:
atpB_2
ATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
 
 0.999
atpE_2
ATP synthase subunit C; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
 
 0.999
atpF_2
ATP F0F1 synthase subunit B; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family.
 
 
 0.999
atpH
ATP synthase F0F1 subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
 0.999
atpA_2
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
 0.998
atpB_1
ATP synthase F0F1 subunit A; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. Belongs to the ATPase A chain family.
  
 0.998
atpC
Hypothetical protein; Produces ATP from ADP in the presence of a proton gradient across the membrane.
 
 0.998
atpA_1
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
 0.998
atpG_2
ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.997
KGK79905.1
ATPase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.997
Your Current Organism:
Thalassobacter stenotrophicus
NCBI taxonomy Id: 266809
Other names: CECT 5294, DSM 16310, Jannaschia cystaugens, Jannaschia cystaugens Adachi et al. 2004, LMG 22015 [[Jannaschia cystaugens]], LMG:22015 [[Jannaschia cystaugens]], NBRC 100362 [[Jannaschia cystaugens]], T. stenotrophicus, Thalassobacter oligotrophus, Thalassobacter sp. 1CONIMAR09, Thalassobacter stenotrophicus Macian et al. 2005, strain 5SM22, strain CFPB-A9 [[Jannaschia cystaugens]]
Server load: low (18%) [HD]