STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KGK80760.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (237 aa)    
Predicted Functional Partners:
nqo2
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 
0.939
nuoB
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
    0.895
nqo1_1
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family.
     
 0.858
KGK80761.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.853
KGK80763.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
  
    0.821
KGK80764.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.800
nuoN
NADH-quinone oxidoreductase subunit N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family.
  
    0.755
nqo3
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family.
  
  
 0.753
nqo5
NADH-quinone oxidoreductase chain 5; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
  
  
 0.749
nuoD
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
  
  
 0.724
Your Current Organism:
Thalassobacter stenotrophicus
NCBI taxonomy Id: 266809
Other names: CECT 5294, DSM 16310, Jannaschia cystaugens, Jannaschia cystaugens Adachi et al. 2004, LMG 22015 [[Jannaschia cystaugens]], LMG:22015 [[Jannaschia cystaugens]], NBRC 100362 [[Jannaschia cystaugens]], T. stenotrophicus, Thalassobacter oligotrophus, Thalassobacter sp. 1CONIMAR09, Thalassobacter stenotrophicus Macian et al. 2005, strain 5SM22, strain CFPB-A9 [[Jannaschia cystaugens]]
Server load: low (14%) [HD]