STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpiARibose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (262 aa)    
Predicted Functional Partners:
tktA
Transketolase; Catalyzes the formation of ribose 5-phosphate and xylulose 5-phosphate from sedoheptulose 7-phosphate and glyceraldehyde 3-phosphate; can transfer ketol groups between several groups; in Escherichia coli there are two tkt genes, tktA expressed during exponential growth and the tktB during stationary phase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transketolase family.
   
 0.970
deoB
Phosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family.
  
 
 0.970
rbsK
Ribokinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway.
   
 0.952
rpe
Ribulose-phosphate 3-epimerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribulose-phosphate 3-epimerase family.
  
 0.946
tktB
Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.933
dxs_2
Transketolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.933
prs
Phosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P); Belongs to the ribose-phosphate pyrophosphokinase family. Class I subfamily.
  
 
 0.902
algC
Phosphoglucomutase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.898
garB
NADPH-glutathione reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.859
xylB_1
Xylulose kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.851
Your Current Organism:
Thalassobacter stenotrophicus
NCBI taxonomy Id: 266809
Other names: CECT 5294, DSM 16310, Jannaschia cystaugens, Jannaschia cystaugens Adachi et al. 2004, LMG 22015 [[Jannaschia cystaugens]], LMG:22015 [[Jannaschia cystaugens]], NBRC 100362 [[Jannaschia cystaugens]], T. stenotrophicus, Thalassobacter oligotrophus, Thalassobacter sp. 1CONIMAR09, Thalassobacter stenotrophicus Macian et al. 2005, strain 5SM22, strain CFPB-A9 [[Jannaschia cystaugens]]
Server load: low (14%) [HD]