STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
yitJCatalyzes the formation of methionine from L-homocysteine and S-adenosyl-L-methionine; Derived by automated computational analysis using gene prediction method: Protein Homology. (340 aa)    
Predicted Functional Partners:
acsE
Methyltetrahydrofolate:corrinoid methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.998
metH
5-methyltetrahydrofolate--homocysteine methyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.998
metF
MTHFR; catalyzes NADH-linked reduction of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate using FAD as a cofactor; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the methylenetetrahydrofolate reductase family.
 
 
 0.991
KGK80090.1
Methylenetetrahydrofolate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.976
KGK78789.1
Enterotoxin; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.972
ahcY
S-adenosyl-L-homocysteine hydrolase; May play a key role in the regulation of the intracellular concentration of adenosylhomocysteine.
  
 
 0.953
metK
S-adenosylmethionine synthetase; Catalyzes the formation of S-adenosylmethionine (AdoMet) from methionine and ATP. The overall synthetic reaction is composed of two sequential steps, AdoMet formation and the subsequent tripolyphosphate hydrolysis which occurs prior to release of AdoMet from the enzyme.
  
 
 0.952
mdeA
O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.948
hom
Homoserine dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.911
cbs
Cysteine synthase; CysK; forms a complex with serine acetyltransferase CysE; functions in cysteine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.906
Your Current Organism:
Thalassobacter stenotrophicus
NCBI taxonomy Id: 266809
Other names: CECT 5294, DSM 16310, Jannaschia cystaugens, Jannaschia cystaugens Adachi et al. 2004, LMG 22015 [[Jannaschia cystaugens]], LMG:22015 [[Jannaschia cystaugens]], NBRC 100362 [[Jannaschia cystaugens]], T. stenotrophicus, Thalassobacter oligotrophus, Thalassobacter sp. 1CONIMAR09, Thalassobacter stenotrophicus Macian et al. 2005, strain 5SM22, strain CFPB-A9 [[Jannaschia cystaugens]]
Server load: low (26%) [HD]