STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ADINL_2512Low-specificity L-threonine aldolase; Catalyzes the cleavage of L-allo-threonine and L-threonine to glycine and acetaldehyde. (352 aa)    
Predicted Functional Partners:
gcvP
Glycine dehydrogenase [decarboxylating] (glycine cleavage system P protein); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
    
 0.941
ilvA
Threonine dehydratase biosynthetic; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA.
  
 
 0.905
ADINL_0922
Threonine synthase.
  
 0.903
ADINL_0339
Sarcosine oxidase alpha subunit; Belongs to the GcvT family.
   
 0.886
phnW
2-aminoethylphosphonate:pyruvate aminotransferase; Involved in phosphonate degradation; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. PhnW subfamily.
    
 0.877
ADINL_0338
Sarcosine oxidase delta subunit.
    
  0.866
ADINL_0340
Sarcosine oxidase gamma subunit.
    
  0.860
bioF
8-amino-7-oxononanoate synthase; Catalyzes the decarboxylative condensation of pimeloyl-[acyl- carrier protein] and L-alanine to produce 8-amino-7-oxononanoate (AON), [acyl-carrier protein], and carbon dioxide.
    
 0.853
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
   
 0.767
glyA-2
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
   
 0.767
Your Current Organism:
Nitrincola lacisaponensis
NCBI taxonomy Id: 267850
Other names: ATCC BAA-920, DSM 16316, N. lacisaponensis, Nitrincola lacisaponensis Dimitriu et al. 2005, strain 4CA
Server load: low (22%) [HD]