STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KGE20158.1UvrABC system subunit C; Derived by automated computational analysis using gene prediction method: Protein Homology. (356 aa)    
Predicted Functional Partners:
uvrB
Excinuclease ABC subunit B; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. Upon binding of the UvrA(2)B(2) complex to a putative damaged site, the DNA wraps around one UvrB monomer. DNA wrap is dependent on ATP binding by UvrB and probably causes local melting of the DNA helix, facilitating insertion of UvrB beta-hairpin between the DNA strands. Then UvrB probes one DNA strand for the presence of a lesion. If a lesion is found the UvrA subunits dissociate [...]
 
 
 0.985
uvrC
Excinuclease ABC subunit C; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrC both incises the 5' and 3' sides of the lesion. The N-terminal half is responsible for the 3' incision and the C-terminal half is responsible for the 5' incision.
  
  
 
0.918
uvrA
Excinuclease ABC subunit A; The UvrABC repair system catalyzes the recognition and processing of DNA lesions. UvrA is an ATPase and a DNA-binding protein. A damage recognition complex composed of 2 UvrA and 2 UvrB subunits scans DNA for abnormalities. When the presence of a lesion has been verified by UvrB, the UvrA molecules dissociate.
 
 
 0.833
KGE18726.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.817
KGE16280.1
DNA polymerase III subunit alpha; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.640
KGE20500.1
ATP-dependent DNA helicase PcrA; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.603
polA
DNA polymerase I; In addition to polymerase activity, this DNA polymerase exhibits 5'-3' exonuclease activity.
 
   
 0.592
ruvB
ATP-dependent DNA helicase RuvB; The RuvA-RuvB complex in the presence of ATP renatures cruciform structure in supercoiled DNA with palindromic sequence, indicating that it may promote strand exchange reactions in homologous recombination. RuvAB is a helicase that mediates the Holliday junction migration by localized denaturation and reannealing.
 
  
 0.584
ligA
NAD-dependent DNA ligase LigA; DNA ligase that catalyzes the formation of phosphodiester linkages between 5'-phosphoryl and 3'-hydroxyl groups in double- stranded DNA using NAD as a coenzyme and as the energy source for the reaction. It is essential for DNA replication and repair of damaged DNA.
 
  
 0.574
KGE20159.1
Alkylphosphonate utilization protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.526
Your Current Organism:
Paenibacillus wynnii
NCBI taxonomy Id: 268407
Other names: CIP 108306, DSM 18334, LMG 22176, LMG:22176, P. wynnii, Paenibacillus wynnii Rodriguez-Diaz et al. 2005
Server load: low (18%) [HD]