STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KPM52902.1Nitrogen regulatory protein P-II 1; Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method: Protein Homology. (112 aa)    
Predicted Functional Partners:
KPM53324.1
Ammonium transporter; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.997
glnD
protein-PII uridylyltransferase; Modifies, by uridylylation and deuridylylation, the PII regulatory proteins (GlnB and homologs), in response to the nitrogen status of the cell that GlnD senses through the glutamine level. Under low glutamine levels, catalyzes the conversion of the PII proteins and UTP to PII-UMP and PPi, while under higher glutamine levels, GlnD hydrolyzes PII-UMP to PII and UMP (deuridylylation). Thus, controls uridylylation state and activity of the PII proteins, and plays an important role in the regulation of nitrogen metabolism.
 
 
 0.994
argB
Acetylglutamate kinase; Catalyzes the ATP-dependent phosphorylation of N-acetyl-L- glutamate; Belongs to the acetylglutamate kinase family. ArgB subfamily.
  
 
 
 0.919
KPM53323.1
Nitrogen regulatory protein P-II 1; Indirectly regulates nitrogen metabolism; at high nitrogen levels P-II prevents the phosphorylation of NR-I, the transcriptional activator of the glutamine synthetase gene (glnA); at low nitrogen levels P-II is uridylylated to form PII-UMP and interacts with an adenylyltransferase (GlnE) that activates GlnA; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 
0.899
KPM54281.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.832
KPM56490.1
Glutamate synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.742
KPM56418.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.719
KPM56321.1
Tetratricopeptide repeat domain protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.719
KPM56117.1
ATP-binding protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.719
KPM55147.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 
 0.719
Your Current Organism:
Frankia sp. R43
NCBI taxonomy Id: 269536
Other names: F. sp. R43
Server load: low (16%) [HD]