STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hemK-2Methylase of polypeptide chain release factors; 50c0001; Derived by automated computational analysis using Genaris Flexible Annotator. (271 aa)    
Predicted Functional Partners:
prfA
Peptide chain release factor 1; Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
 
 
 0.974
atpH
ATP synthase subunit delta; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation.
  
   0.738
atpG
ATP synthase F0F1 subunit gamma; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex.
  
   0.701
atpA
ATP F0F1 synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit.
  
   0.700
plsX
Phosphate acyltransferase; Catalyzes the reversible formation of acyl-phosphate (acyl- PO(4)) from acyl-[acyl-carrier-protein] (acyl-ACP). This enzyme utilizes acyl-ACP as fatty acyl donor, but not acyl-CoA.
  
    0.687
rplL
50S ribosomal protein L7; Forms part of the ribosomal stalk which helps the ribosome interact with GTP-bound translation factors. Is thus essential for accurate translation; Belongs to the bacterial ribosomal protein bL12 family.
  
  
 0.686
truA
Pseudouridine synthase; Formation of pseudouridine at positions 38, 39 and 40 in the anticodon stem and loop of transfer RNAs.
 
  
 0.674
ackA
Acetate kinase; 50c0002; CDS was addded manually by using GenomeMatcher; Belongs to the acetokinase family.
       0.670
BAQ48281.1
Acetate kinase; CDS was addded manually by using GenomeMatcher.
       0.670
atpC
ATP synthase F0F1 subunit epsilon; Produces ATP from ADP in the presence of a proton gradient across the membrane.
  
   0.653
Your Current Organism:
Methylobacterium aquaticum
NCBI taxonomy Id: 270351
Other names: CCM 7218, CECT 5998, CIP 108333, DSM 16371, M. aquaticum, Methylobacterium aquaticum Gallego et al. 2005, strain GR16
Server load: low (20%) [HD]