STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
topADNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...] (673 aa)    
Predicted Functional Partners:
APE_1353.1
ATP-dependent helicase.
 
 0.999
APE_1323.1
Single-stranded DNA binding protein; SSB.
 
 0.930
APE_1436.1
Repair endonuclease XPF.
    
 0.928
rad50
DNA double-strand break repair rad50 ATPase; Part of the Rad50/Mre11 complex, which is involved in the early steps of DNA double-strand break (DSB) repair. The complex may facilitate opening of the processed DNA ends to aid in the recruitment of HerA and NurA. Rad50 controls the balance between DNA end bridging and DNA resection via ATP-dependent structural rearrangements of the Rad50/Mre11 complex; Belongs to the SMC family. RAD50 subfamily.
 
 0.915
fen
Flap structure-specific endonuclease; Structure-specific nuclease with 5'-flap endonuclease and 5'- 3' exonuclease activities involved in DNA replication and repair. During DNA replication, cleaves the 5'-overhanging flap structure that is generated by displacement synthesis when DNA polymerase encounters the 5'-end of a downstream Okazaki fragment. Binds the unpaired 3'-DNA end and kinks the DNA to facilitate 5' cleavage specificity. Cleaves one nucleotide into the double-stranded DNA from the junction in flap DNA, leaving a nick for ligation. Also involved in the base excision repair [...]
  
 0.837
mre11
Double-strand break repair protein MRE11; Part of the Rad50/Mre11 complex, which is involved in the early steps of DNA double-strand break (DSB) repair. The complex may facilitate opening of the processed DNA ends to aid in the recruitment of HerA and NurA. Mre11 binds to DSB ends and has both double-stranded 3'-5' exonuclease activity and single-stranded endonuclease activity. Belongs to the MRE11/RAD32 family.
  
 0.824
rfcL
Replication factor C large subunit; Part of the RFC clamp loader complex which loads the PCNA sliding clamp onto DNA; Belongs to the activator 1 small subunits family. RfcL subfamily.
 
 0.783
aspS
aspartyl-tRNA synthetase; Aspartyl-tRNA synthetase with relaxed tRNA specificity since it is able to aspartylate not only its cognate tRNA(Asp) but also tRNA(Asn). Reaction proceeds in two steps: L-aspartate is first activated by ATP to form Asp-AMP and then transferred to the acceptor end of tRNA(Asp/Asn) (By similarity).
 
 
 0.772
APE_0322.1
Putative DNA repair helicase Rad3.
  
 0.766
radA
DNA repair and recombination protein RadA; Involved in DNA repair and in homologous recombination. Binds and assemble on single-stranded DNA to form a nucleoprotein filament. Hydrolyzes ATP in a ssDNA-dependent manner and promotes DNA strand exchange between homologous DNA molecules (By similarity).
  
 0.747
Your Current Organism:
Aeropyrum pernix
NCBI taxonomy Id: 272557
Other names: A. pernix K1, Aeropyrum pernix K1, Aeropyrum pernix str. K1, Aeropyrum pernix strain K1
Server load: low (26%) [HD]