STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glyASerine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism. (413 aa)    
Predicted Functional Partners:
BH2816
Aminomethyltransferase; The glycine cleavage system catalyzes the degradation of glycine.
 
 0.997
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; BH0633.
  
 0.996
folD
Methylenetetrahydrofolate dehydrogenase(NADP+)/methenyltetrahydrofolate cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
 
 0.982
BH2814
Glycine dehydrogenase subunit 2; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family. C-terminal subunit subfamily.
  
 
 0.977
BH3484
Glycine cleavage system protein H; The glycine cleavage system catalyzes the degradation of glycine. The H protein shuttles the methylamine group of glycine from the P protein to the T protein; Belongs to the GcvH family.
 
 
 0.976
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 0.971
BH2815
Glycine dehydrogenase subunit 1; The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein.
  
 
 0.967
BH3767
Ribose 5-phosphate epimerase (pentose phosphate).
 
    0.964
BH1629
BH1629; unknown conserved protein.
  
 
 0.958
BH2497
L-serine dehydratase beta subunit; Belongs to the iron-sulfur dependent L-serine dehydratase family.
  
 
 0.951
Your Current Organism:
Bacillus halodurans
NCBI taxonomy Id: 272558
Other names: B. halodurans C-125, Bacillus halodurans C-125, Bacillus halodurans str. C-125, Bacillus halodurans strain C-125
Server load: low (12%) [HD]