STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
glmMPhosphoglucosamine mutase; Catalyzes the conversion of glucosamine-6-phosphate to glucosamine-1-phosphate; Belongs to the phosphohexose mutase family. (448 aa)    
Predicted Functional Partners:
glmU
Bifunctional protein GlmU [Includes: UDP-N-acetylglucosamine pyrophosphorylase; Catalyzes the last two sequential reactions in the de novo biosynthetic pathway for UDP-N-acetylglucosamine (UDP-GlcNAc). The C- terminal domain catalyzes the transfer of acetyl group from acetyl coenzyme A to glucosamine-1-phosphate (GlcN-1-P) to produce N- acetylglucosamine-1-phosphate (GlcNAc-1-P), which is converted into UDP-GlcNAc by the transfer of uridine 5-monophosphate (from uridine 5- triphosphate), a reaction catalyzed by the N-terminal domain. In the C-terminal section; belongs to the transferas [...]
 
 0.997
glmS
Glucosamine--fructose-6-phosphate aminotransferase [isomerizing]; Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
 
 0.984
nagB
Glucosamine-6-phosphate deaminase; Catalyzes the reversible isomerization-deamination of glucosamine 6-phosphate (GlcN6P) to form fructose 6-phosphate (Fru6P) and ammonium ion.
 
 
 0.926
nagA
N-acetylglucosamine-6-phosphate deacetylase (GlcNAc 6-P deacetylase); Experimentally verified through Mass Spectrometry as part of Spo0A regulated proteome: up-regulated in Spo0A mutant PMID:24568651.
   
 
 0.912
NagA2
N-acetylglucosamine-6-phosphate deacetylase.
   
 
 0.912
Cca
Putative tRNA-nucleotidyltransferase/Poly(A) polymerase family member.
    
 0.846
murC
UDP-N-acetylmuramate--L-alanine ligase (UDP-N-acetylmuramoyl-L-alanine synthetase); Cell wall formation; Belongs to the MurCDEF family.
  
 
 0.815
dacA
Conserved hypothetical protein, CHP00159 family; Catalyzes the condensation of 2 ATP molecules into cyclic di- AMP (c-di-AMP), a second messenger used to regulate differing processes in different bacteria.
  
 
 0.796
murA
UDP-N-acetylglucosamine 1-carboxyvinyltransferase; Cell wall formation. Adds enolpyruvyl to UDP-N- acetylglucosamine; Belongs to the EPSP synthase family. MurA subfamily.
 
  
 0.756
recA
Protein RecA (Recombinase A); Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
 
  
 0.752
Your Current Organism:
Clostridioides difficile
NCBI taxonomy Id: 272563
Other names: C. difficile 630, Clostridioides difficile 630, Clostridium difficile 630, Clostridium difficile 630 (epidemic type X), Clostridium difficile str. 630, Clostridium difficile strain 630, Peptoclostridium difficile 630
Server load: low (16%) [HD]