STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rhoTranscription termination factor Rho; Facilitates transcription termination by a mechanism that involves Rho binding to the nascent RNA, activation of Rho's RNA- dependent ATPase activity, and release of the mRNA from the DNA template. (529 aa)    
Predicted Functional Partners:
nusG
Transcription antitermination protein; Participates in transcription elongation, termination and antitermination.
   
 
 0.931
nusA
Transcription elongation protein; Participates in both transcription termination and antitermination.
  
 
 0.917
rpoA
DNA-directed RNA polymerase subunit alpha; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
  
 
 0.909
rpoB
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.908
rpoC
DNA-directed RNA polymerase subunit beta; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.
   
 
 0.899
pnp
Polyribonucleotide nucleotidyltransferase; Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'- to 5'- direction.
   
  
 0.859
rpmE
50S ribosomal protein L31; Binds the 23S rRNA.
  
  
 0.844
rnpA
Ribonuclease P protein component (RNaseP protein) (RNase P protein) (Protein C5); RNaseP catalyzes the removal of the 5'-leader sequence from pre-tRNA to produce the mature 5'-terminus. It can also cleave other RNA substrates such as 4.5S RNA. The protein component plays an auxiliary but essential role in vivo by binding to the 5'-leader sequence and broadening the substrate specificity of the ribozyme.
  
  
 0.822
rpoZ
DNA-directed RNA polymerase subunit omega; Promotes RNA polymerase assembly. Latches the N- and C- terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.
  
 
 0.819
prfA
Peptide chain release factor 1 (RF-1); Peptide chain release factor 1 directs the termination of translation in response to the peptide chain termination codons UAG and UAA.
  
  
 0.781
Your Current Organism:
Clostridioides difficile
NCBI taxonomy Id: 272563
Other names: C. difficile 630, Clostridioides difficile 630, Clostridium difficile 630, Clostridium difficile 630 (epidemic type X), Clostridium difficile str. 630, Clostridium difficile strain 630, Peptoclostridium difficile 630
Server load: low (16%) [HD]