STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KPN_01011Putative diogenase beta subunit; Converts carnitine to trimethylamine and malic semialdehyde. (321 aa)    
Predicted Functional Partners:
nuoC
NADH dehydrogenase I chain C, D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family.
  
 
 0.986
KPN_01013
Putative di(mono)oxygenase, alpha subunit; Converts carnitine to trimethylamine and malic semialdehyde.
 
 
 0.965
yiiM
Hypothetical protein.
   
 0.933
cysJ
Sulfite reductase (NADPH), flavoprotein beta subunit; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. The flavoprotein component catalyzes the electron flow from NADPH -> FAD -> FMN to the hemoprotein component; Belongs to the NADPH-dependent sulphite reductase flavoprotein subunit CysJ family. In the C-terminal section; belongs to the flavoprotein pyridine nucleotide cytochrome reductase family.
  
 0.928
aegA
Putative oxidoreductase, Fe-S subunit (anaerobically expressed gene).
   
 0.923
cysI
Sulfite reductase, alpha subunit; Component of the sulfite reductase complex that catalyzes the 6-electron reduction of sulfite to sulfide. This is one of several activities required for the biosynthesis of L-cysteine from sulfate. Belongs to the nitrite and sulfite reductase 4Fe-4S domain family.
   
 0.913
hmpA
Dihydropteridine reductase, ferrisiderophore reductase activity; Is involved in NO detoxification in an aerobic process, termed nitric oxide dioxygenase (NOD) reaction that utilizes O(2) and NAD(P)H to convert NO to nitrate, which protects the bacterium from various noxious nitrogen compounds. Therefore, plays a central role in the inducible response to nitrosative stress; Belongs to the globin family. Two-domain flavohemoproteins subfamily.
 
 
 0.890
KPN_02220
Putative nitrite reductase [NAD(P)H] large subunit; Belongs to the nitrite and sulfite reductase 4Fe-4S domain family.
  
 
 0.879
paaZ
Phenylacetic acid degradation protein; putative aldehyde dehydrogenase.
  
 
 0.877
paaA
Phenylacetic acid degradation protein.
  
 0.862
Your Current Organism:
Klebsiella pneumoniae MGH78578
NCBI taxonomy Id: 272620
Other names: K. pneumoniae subsp. pneumoniae MGH 78578, Klebsiella pneumoniae MCG 78578, Klebsiella pneumoniae str. MCG 78578, Klebsiella pneumoniae subsp. pneumoniae ATCC 700721, Klebsiella pneumoniae subsp. pneumoniae MGH 78578, Klebsiella pneumoniae subsp. pneumoniae str. MGH 78578, Klebsiella pneumoniae subsp. pneumoniae strain MGH 78578
Server load: low (20%) [HD]