STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
hisCSimilar to histidinol-phosphate aminotransferase and tyrosine/phenylalanine aminotransferase; Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. Histidinol-phosphate aminotransferase subfamily. (360 aa)    
Predicted Functional Partners:
hisB
Imidazoleglycerol-phosphate dehydratase.
 
 0.998
tyrA
TyrA protein; Similar to prephenate dehydrogenase.
  
 
 0.990
hisD
Histidinol dehydrogenase; Catalyzes the sequential NAD-dependent oxidations of L- histidinol to L-histidinaldehyde and then to L-histidine.
  
 0.969
hisJ
Histidinol-phosphatase; Similar histidinol phosphate phosphatase; Belongs to the PHP hydrolase family. HisK subfamily.
 
 
 0.956
daaA
D-Amino Acid Aminotransferase; Acts on the D-isomers of alanine, leucine, aspartate, glutamate, aminobutyrate, norvaline and asparagine. The enzyme transfers an amino group from a substrate D-amino acid to the pyridoxal phosphate cofactor to form pyridoxamine and an alpha-keto acid in the first half-reaction. The second half-reaction is the reverse of the first, transferring the amino group from the pyridoxamine to a second alpha-keto acid to form the product D-amino acid via a ping-pong mechanism. This is an important process in the formation of D-alanine and D-glutamate, which are es [...]
  
 
 0.920
lin1571
Similar to prephenate dehydratase PheA.
  
 
 0.919
aspB
Aminotransferase; Similar to aspartate aminotransferases.
 
 
0.919
aroF
Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
  
  
 0.912
aroB
3-dehydroquinate synthase; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family.
  
  
 0.892
hisH
Imidazole glycerol phosphate synthase subunit HisH; IGPS catalyzes the conversion of PRFAR and glutamine to IGP, AICAR and glutamate. The HisH subunit catalyzes the hydrolysis of glutamine to glutamate and ammonia as part of the synthesis of IGP and AICAR. The resulting ammonia molecule is channeled to the active site of HisF.
 
  
 0.857
Your Current Organism:
Listeria innocua
NCBI taxonomy Id: 272626
Other names: L. innocua Clip11262, Listeria innocua Clip11262, Listeria innocua str. Clip11262, Listeria innocua strain Clip11262
Server load: low (26%) [HD]