node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
clpB | dnaJ | MPN_531 | MPN_021 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.896 |
clpB | dnaK | MPN_531 | MPN_434 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.999 |
clpB | groEL | MPN_531 | MPN_573 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | Heat shock protein GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. Belongs to the chaperonin (HSP60) family. | 0.808 |
clpB | groES | MPN_531 | MPN_574 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | Heat shock protein GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.870 |
clpB | grpE | MPN_531 | MPN_120 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.945 |
clpB | sigA | MPN_531 | MPN_352 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | Sigma-70 Factor Family; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. | 0.510 |
clpB | yqxE | MPN_531 | MPN_124 | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | HrcA-like protein; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.870 |
dnaJ | clpB | MPN_021 | MPN_531 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | 0.896 |
dnaJ | dnaK | MPN_021 | MPN_434 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | 0.999 |
dnaJ | groEL | MPN_021 | MPN_573 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Heat shock protein GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. Belongs to the chaperonin (HSP60) family. | 0.891 |
dnaJ | groES | MPN_021 | MPN_574 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Heat shock protein GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.816 |
dnaJ | grpE | MPN_021 | MPN_120 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.984 |
dnaJ | sigA | MPN_021 | MPN_352 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | Sigma-70 Factor Family; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. | 0.459 |
dnaJ | yqxE | MPN_021 | MPN_124 | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | HrcA-like protein; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons. | 0.802 |
dnaK | clpB | MPN_434 | MPN_531 | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | ATP-dependent protease binding subunit ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE. Acts before DnaK, in the processing of protein aggregates. Protein binding stimulates the ATPase activity; ATP hydrolysis unfolds the denatured protein aggregates, which probably helps expose new hydrophobic binding sites on the surface of ClpB-bound aggregates, contributing to the solubilization and refolding of denatured protein aggregates by DnaK (By similarity). Belongs to the ClpA [...] | 0.999 |
dnaK | dnaJ | MPN_434 | MPN_021 | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Heat shock protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...] | 0.999 |
dnaK | groEL | MPN_434 | MPN_573 | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Heat shock protein GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions. Belongs to the chaperonin (HSP60) family. | 0.994 |
dnaK | groES | MPN_434 | MPN_574 | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Heat shock protein GroES; Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter. | 0.985 |
dnaK | grpE | MPN_434 | MPN_120 | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Heat shock protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- [...] | 0.999 |
dnaK | sigA | MPN_434 | MPN_352 | DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family. | Sigma-70 Factor Family; Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the primary sigma factor during exponential growth. | 0.794 |