STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AROKSHIKIMATE KINASE; Catalyzes the specific phosphorylation of the 3-hydroxyl group of shikimic acid using ATP as a cosubstrate; Belongs to the shikimate kinase family. (166 aa)    
Predicted Functional Partners:
AROE
SHIKIMATE 5-DEHYDROGENASE; Involved in the biosynthesis of the chorismate, which leads to the biosynthesis of aromatic amino acids. Catalyzes the reversible NADPH linked reduction of 3-dehydroshikimate (DHSA) to yield shikimate (SA).
 
 0.997
aroA
3-PHOSPHOSHIKIMATE 1-CARBOXYVINYLTRANSFERASE; Catalyzes the transfer of the enolpyruvyl moiety of phosphoenolpyruvate (PEP) to the 5-hydroxyl of shikimate-3-phosphate (S3P) to produce enolpyruvyl shikimate-3-phosphate and inorganic phosphate.
 
 
 0.988
AROB
3-DEHYDROQUINATE SYNTHASE; Catalyzes the conversion of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) to dehydroquinate (DHQ); Belongs to the sugar phosphate cyclases superfamily. Dehydroquinate synthase family.
  
 0.988
aroC
CHORISMATE SYNTHASE 5-ENOLPYRUVYLSHIKIMATE-3-PHOSPHATEPHOSPHOLYASE; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system.
 
  
 0.834
WS1495
Hypothetical protein.
       0.816
WS1496
Conserved hypothetical protein.
       0.816
RECA
RECA PROTEIN; Can catalyze the hydrolysis of ATP in the presence of single- stranded DNA, the ATP-dependent uptake of single-stranded DNA by duplex DNA, and the ATP-dependent hybridization of homologous single-stranded DNAs. It interacts with LexA causing its activation and leading to its autocatalytic cleavage; Belongs to the RecA family.
     
 0.807
eno
PUTATIVE ENOLASE (2-PHOSPHOGLYCERATE DEHYDRATASE); Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
       0.794
PHEA
CHORISMATE MUTASEPREPHENATE DEHYDRATASE.
 
  
 0.740
tyrA
PREPHENATE DEHYDROGENASE.
 
  
 0.652
Your Current Organism:
Wolinella succinogenes
NCBI taxonomy Id: 273121
Other names: W. succinogenes DSM 1740, Wolinella succinogenes DSM 1740
Server load: low (20%) [HD]