STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaKClass I heat-shock protein (molecular chaperone); Acts as a chaperone; Belongs to the heat shock protein 70 family. (612 aa)    
Predicted Functional Partners:
htpG
Class III heat-shock protein (molecular chaperone); Molecular chaperone. Has ATPase activity.
   
 0.999
grpE
Heat-shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depen [...]
 
 0.999
dnaJ
Heat-shock protein; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, DnaK [...]
 0.999
groEL
Class I heat-shock protein (chaperonin); Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
 
 
 0.996
hrcA
Transcriptional regulator; Negative regulator of class I heat shock genes (grpE-dnaK- dnaJ and groELS operons). Prevents heat-shock induction of these operons.
  
  
 0.991
groES
Class I heat-shock protein (chaperonin); Binds to Cpn60 in the presence of Mg-ATP and suppresses the ATPase activity of the latter.
 
 
 0.988
rtpA
Inhibitor of TRAP, regulated by T-BOX (trp) sequence RtpA.
  
 0.986
clpE
ATP-dependent Clp protease-like (class III stress gene) ClpE; Belongs to the ClpA/ClpB family.
 
 
 0.980
rplP
Ribosomal protein L16; Binds 23S rRNA and is also seen to make contacts with the A and possibly P site tRNAs; Belongs to the universal ribosomal protein uL16 family.
   
 0.978
clpC
Class III stress response-related ATPase; Belongs to the ClpA/ClpB family.
  
 
 0.978
Your Current Organism:
Bacillus licheniformis
NCBI taxonomy Id: 279010
Other names: B. licheniformis DSM 13 = ATCC 14580, Bacillus licheniformis ATCC 14580, Bacillus licheniformis ATCC 14580 = DSM 13, Bacillus licheniformis DSM 13, Bacillus licheniformis DSM 13 = ATCC 14580
Server load: low (38%) [HD]