STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KYG74743.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+. (151 aa)    
Predicted Functional Partners:
KYG74745.1
Agmatinase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the arginase family.
       0.614
topA
DNA topoisomerase I; Releases the supercoiling and torsional tension of DNA, which is introduced during the DNA replication and transcription, by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA- (5'-phosphotyrosyl)-enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand, thus removing DNA supe [...]
       0.584
speE
Spermidine synthase; Catalyzes the decarboxylation of S-adenosylmethionine to S- adenosylmethioninamine (dcAdoMet), the propylamine donor required for the synthesis of the polyamines spermine and spermidine from the diamine putrescine; Belongs to the spermidine/spermine synthase family.
       0.580
KYG71781.1
Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.
    
  0.561
gpmI
2,3-bisphosphoglycerate-independent phosphoglycerate mutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate.
    
 0.494
pgk
Phosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family.
    
  0.486
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
    
 0.480
nnrD
Hypothetical protein; Bifunctional enzyme that catalyzes the epimerization of the S- and R-forms of NAD(P)HX and the dehydration of the S-form of NAD(P)HX at the expense of ADP, which is converted to AMP. This allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. Catalyzes the epimerization of the S- and R-forms of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration. This is a prerequisite for the S-specific NAD(P)H-hydrate dehydratase to allow the repair of both epi [...]
   
   0.440
KYG74746.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: GeneMarkS+.
       0.402
Your Current Organism:
Roseivirga ehrenbergii
NCBI taxonomy Id: 279360
Other names: Flexibacteraceae bacterium KMM 6017, JCM 13514, KCTC 12282, KMM 6017, LMG 22567, LMG:22567, R. ehrenbergii, Roseivirga ehrenbergii Nedashkovskaya et al. 2005 emend. Hahnke et al. 2016, Roseivirga ehrenbergii Nedashkovskaya et al. 2005 emend. Nedashkovskaya et al. 2008
Server load: low (30%) [HD]