STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ORV32740.1Alpha/beta hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology. (290 aa)    
Predicted Functional Partners:
ORV34263.1
NADH-quinone oxidoreductase subunit G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. Belongs to the complex I 75 kDa subunit family.
   
 
 0.817
ORV34261.1
NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
   0.810
nuoD
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
   
 
 0.796
ORV34262.1
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Belongs to the complex I 51 kDa subunit family.
   
 
 0.792
ORV27824.1
NADH dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.792
nuoI
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
   
   0.781
ORV20607.1
Polyketide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.780
ORV29680.1
Polyketide synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.780
AWB99_23405
Acyltransferase; Incomplete; partial in the middle of a contig; missing stop; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.780
nuoC
NADH dehydrogenase; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be a menaquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 30 kDa subunit family.
   
 
 0.771
Your Current Organism:
Mycolicibacterium confluentis
NCBI taxonomy Id: 28047
Other names: ATCC 49920, CIP 105510, DSM 44017, JCM 13671, M. confluentis, Mycobacterium confluentis
Server load: low (10%) [HD]