STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OOV08935.14-hydroxythreonine-4-phosphate dehydrogenase PdxA; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the PdxA family. (353 aa)    
Predicted Functional Partners:
serC
Phosphoserine transaminase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily.
     
 0.963
OOV08217.1
Threonine synthase; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.913
pdxJ
Pyridoxine 5'-phosphate synthase; Catalyzes the complicated ring closure reaction between the two acyclic compounds 1-deoxy-D-xylulose-5-phosphate (DXP) and 3-amino- 2-oxopropyl phosphate (1-amino-acetone-3-phosphate or AAP) to form pyridoxine 5'-phosphate (PNP) and inorganic phosphate.
 
  
 0.853
OOV06364.1
Nif3-like dinuclear metal center hexameric protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.791
OOV08492.1
CDP-6-deoxy-delta-3,4-glucoseen reductase; Catalyzes the formation of 3,6-dideoxy-D-glycero-D-glycero-4-hexulose; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
  0.779
rsmA
16S rRNA (adenine(1518)-N(6)/adenine(1519)-N(6))- dimethyltransferase; Specifically dimethylates two adjacent adenosines (A1518 and A1519) in the loop of a conserved hairpin near the 3'-end of 16S rRNA in the 30S particle. May play a critical role in biogenesis of 30S subunits.
 
  
 0.750
gyrB
DNA topoisomerase (ATP-hydrolyzing) subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP [...]
 
      0.718
OOV08355.1
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
    
 0.692
OOV06365.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.561
ribB
3,4-dihydroxy-2-butanone-4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; Belongs to the DHBP synthase family.
  
  
 0.547
Your Current Organism:
Rhodoferax fermentans
NCBI taxonomy Id: 28066
Other names: ATCC 49787, DSM 10138, IFO 16659, JCM 7819, NBRC 16659, R. fermentans, strain FR2
Server load: low (28%) [HD]