node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
OOV05875.1 | msrQ | RF819_03345 | RF819_06440 | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0276 family. | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | 0.446 |
OOV06415.1 | msrP | RF819_06450 | RF819_06445 | Cytochrome c4; Derived by automated computational analysis using gene prediction method: Protein Homology. | Mononuclear molybdenum enzyme YedY; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecific, being able to reduce bot [...] | 0.499 |
OOV06415.1 | msrQ | RF819_06450 | RF819_06440 | Cytochrome c4; Derived by automated computational analysis using gene prediction method: Protein Homology. | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | 0.446 |
OOV08498.1 | msrP | RF819_18945 | RF819_06445 | Hydroxyisourate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transthyretin family. 5-hydroxyisourate hydrolase subfamily. | Mononuclear molybdenum enzyme YedY; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecific, being able to reduce bot [...] | 0.542 |
OOV08498.1 | msrQ | RF819_18945 | RF819_06440 | Hydroxyisourate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transthyretin family. 5-hydroxyisourate hydrolase subfamily. | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | 0.703 |
msrP | OOV06415.1 | RF819_06445 | RF819_06450 | Mononuclear molybdenum enzyme YedY; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecific, being able to reduce bot [...] | Cytochrome c4; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.499 |
msrP | OOV08498.1 | RF819_06445 | RF819_18945 | Mononuclear molybdenum enzyme YedY; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecific, being able to reduce bot [...] | Hydroxyisourate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transthyretin family. 5-hydroxyisourate hydrolase subfamily. | 0.542 |
msrP | msrQ | RF819_06445 | RF819_06440 | Mononuclear molybdenum enzyme YedY; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecific, being able to reduce bot [...] | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | 0.996 |
msrQ | OOV05875.1 | RF819_06440 | RF819_03345 | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the UPF0276 family. | 0.446 |
msrQ | OOV06415.1 | RF819_06440 | RF819_06450 | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | Cytochrome c4; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.446 |
msrQ | OOV08498.1 | RF819_06440 | RF819_18945 | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | Hydroxyisourate hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the transthyretin family. 5-hydroxyisourate hydrolase subfamily. | 0.703 |
msrQ | msrP | RF819_06440 | RF819_06445 | Sulfoxide reductase heme-binding subunit YedZ; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. MsrQ provides electrons for reduction to the reductase catalyti [...] | Mononuclear molybdenum enzyme YedY; Part of the MsrPQ system that repairs oxidized periplasmic proteins containing methionine sulfoxide residues (Met-O), using respiratory chain electrons. Thus protects these proteins from oxidative-stress damage caused by reactive species of oxygen and chlorine generated by the host defense mechanisms. MsrPQ is essential for the maintenance of envelope integrity under bleach stress, rescuing a wide series of structurally unrelated periplasmic proteins from methionine oxidation. The catalytic subunit MsrP is non-stereospecific, being able to reduce bot [...] | 0.996 |