STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KIU17340.1Glutaredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (78 aa)    
Predicted Functional Partners:
KIU17708.1
Ribonucleotide-diphosphate reductase subunit alpha; Provides the precursors necessary for DNA synthesis. Catalyzes the biosynthesis of deoxyribonucleotides from the corresponding ribonucleotides.
  
 0.969
KIU16248.1
Catalyzes the reduction of mycothione or glutathione to mycothione or glutathione disulfide; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.848
msrA
Methionine sulfoxide reductase A; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine.
  
 
 0.841
msrA-2
Methionine sulfoxide reductase A; Has an important function as a repair enzyme for proteins that have been inactivated by oxidation. Catalyzes the reversible oxidation-reduction of methionine sulfoxide in proteins to methionine.
  
 
 0.841
KIU15907.1
Adenylate cyclase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the adenylyl cyclase class-4/guanylyl cyclase family.
  
 
 0.749
KIU13859.1
Peptide methionine sulfoxide reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.743
KIU17341.1
ATP-dependent DNA helicase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.700
ribBA
3,4-dihydroxy-2-butanone 4-phosphate synthase; Catalyzes the conversion of D-ribulose 5-phosphate to formate and 3,4-dihydroxy-2-butanone 4-phosphate; In the C-terminal section; belongs to the GTP cyclohydrolase II family.
    
  0.696
KIU13994.1
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
    
 0.691
mca
GlcNAc-PI de-N-acetylase; A mycothiol (MSH, N-acetylcysteinyl-glucosaminyl-inositol) S- conjugate amidase, it recycles conjugated MSH to the N-acetyl cysteine conjugate (AcCys S-conjugate, a mercapturic acid) and the MSH precursor. Involved in MSH-dependent detoxification of a number of alkylating agents and antibiotics; Belongs to the MshB deacetylase family. Mca subfamily.
  
   
 0.688
Your Current Organism:
Mycolicibacterium llatzerense
NCBI taxonomy Id: 280871
Other names: CCUG 54744, CECT 7273, DSM 45343, JCM 16229, M. llatzerense, Mycobacterium llatzerense, Mycobacterium llatzerense Gomila et al. 2008, Mycobacterium sp. 13-009-09768, Mycobacterium sp. MG12, Mycobacterium sp. MG13, Mycobacterium sp. MG14, Mycobacterium sp. MG15, Mycobacterium sp. MG16, Mycobacterium sp. MG18, Mycolicibacterium llatzerense (Gomila et al. 2008) Gupta et al. 2018, strain MG13
Server load: low (28%) [HD]