STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KIU17384.1Glyceraldehyde-3-phosphate dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the glyceraldehyde-3-phosphate dehydrogenase family. (339 aa)    
Predicted Functional Partners:
pgk
Phosphoglycerate kinase; Converts 3-phospho-D-glycerate to 3-phospho-D-glyceroyl phosphate during the glycolysis pathway; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the phosphoglycerate kinase family.
 0.997
tpiA
Triosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family.
 0.997
eno
Enolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis; Belongs to the enolase family.
 
 0.987
KIU18258.1
Fructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family.
  
 0.959
KIU16408.1
Pyruvate kinase; Catalyzes the formation of phosphoenolpyruvate from pyruvate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.905
pgi-2
Glucose-6-phosphate isomerase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 
 0.888
pgi
Glucose-6-phosphate isomerase; Functions in sugar metabolism in glycolysis and the Embden-Meyerhof pathways (EMP) and in gluconeogenesis; catalyzes reversible isomerization of glucose-6-phosphate to fructose-6-phosphate; member of PGI family; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the GPI family.
  
 
 0.888
zwf
Glucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone.
  
 0.885
KIU14948.1
Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.864
KIU13577.1
Uridine kinase; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 0.864
Your Current Organism:
Mycolicibacterium llatzerense
NCBI taxonomy Id: 280871
Other names: CCUG 54744, CECT 7273, DSM 45343, JCM 16229, M. llatzerense, Mycobacterium llatzerense, Mycobacterium llatzerense Gomila et al. 2008, Mycobacterium sp. 13-009-09768, Mycobacterium sp. MG12, Mycobacterium sp. MG13, Mycobacterium sp. MG14, Mycobacterium sp. MG15, Mycobacterium sp. MG16, Mycobacterium sp. MG18, Mycolicibacterium llatzerense (Gomila et al. 2008) Gupta et al. 2018, strain MG13
Server load: low (20%) [HD]