STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KKB63043.1Membrane protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (140 aa)    
Predicted Functional Partners:
hemH
Ferrochelatase; Catalyzes the ferrous insertion into protoporphyrin IX. Belongs to the ferrochelatase family.
 
  
 0.776
hemF
Coproporphyrinogen III oxidase; Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen- IX.
 
  
 0.738
KKB64531.1
Coproporphyrinogen III oxidase; Involved in the heme biosynthesis. Catalyzes the aerobic oxidative decarboxylation of propionate groups of rings A and B of coproporphyrinogen-III to yield the vinyl groups in protoporphyrinogen- IX.
 
  
 0.733
KKB64441.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.719
proA
Gamma-glutamyl phosphate reductase; Catalyzes the NADPH-dependent reduction of L-glutamate 5- phosphate into L-glutamate 5-semialdehyde and phosphate. The product spontaneously undergoes cyclization to form 1-pyrroline-5-carboxylate. Belongs to the gamma-glutamyl phosphate reductase family.
       0.650
KKB61611.1
Coproporphyrinogen III oxidase; Probably acts as a heme chaperone, transferring heme to an unknown acceptor. Binds one molecule of heme per monomer, possibly covalently. Binds 1 [4Fe-4S] cluster. The cluster is coordinated with 3 cysteines and an exchangeable S-adenosyl-L-methionine. Belongs to the anaerobic coproporphyrinogen-III oxidase family.
    
 0.642
KKB64290.1
Cobalamin biosynthesis protein CobN; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.571
KKB64291.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.561
KKB64292.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
    
 0.560
KKB65359.1
FAD-dependent oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.558
Your Current Organism:
Robbsia andropogonis
NCBI taxonomy Id: 28092
Other names: ATCC 19311 [[Pseudomonas woodsii]], ATCC 23061, Aplanobacter stizolobii, Bacterium andropogoni, Bacterium woodsii, Burkholderia andropogonis, CCUG 32772, CFBP 2421, CIP 105771, DSM 9511, DSM 9884 [[Pseudomonas woodsii]], IBSBF 199, ICMP 2807, ICMP 3967 [[Pseudomonas woodsii]], JCM 10487, LMG 2129, LMG 2362 [[Pseudomonas woodsii]], LMG:2129, LMG:2362 [[Pseudomonas woodsii]], NCPPB 934, NCPPB 968 [[Pseudomonas woodsii]], NRRL B-14296, Paraburkholderia andropogonis, Pseudomonas andropogonis, Pseudomonas stizolobii, Pseudomonas woodsii, R. andropogonis, strain PW 102 [[Pseudomonas woodsii]]
Server load: low (12%) [HD]