STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KKB62865.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (430 aa)    
Predicted Functional Partners:
sucC
succinyl-CoA synthetase subunit beta; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit.
  
 0.971
acnA
Aconitate hydratase; Catalyzes the isomerization of citrate to isocitrate via cis- aconitate.
 
 0.968
KKB63522.1
Fumarate hydratase; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family.
  
 
 0.953
mdh
Malate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. Belongs to the LDH/MDH superfamily. MDH type 2 family.
  
 0.940
KKB61235.1
Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.916
KKB65395.1
3-hydroxyacyl-CoA dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.915
sdhB
Part of four member succinate dehydrogenase enzyme complex that forms a trimeric complex (trimer of tetramers); SdhA/B are the catalytic subcomplex and can exhibit succinate dehydrogenase activity in the absence of SdhC/D which are the membrane components and form cytochrome b556; SdhC binds ubiquinone; oxidizes succinate to fumarate while reducing ubiquinone to ubiquinol; the catalytic subunits are similar to fumarate reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.887
KKB63095.1
Converts isocitrate to alpha ketoglutarate; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.881
KKB63999.1
Part of four member fumarate reductase enzyme complex FrdABCD which catalyzes the reduction of fumarate to succinate during anaerobic respiration; FrdAB are the catalytic subcomplex consisting of a flavoprotein subunit and an iron-sulfur subunit, respectively; FrdCD are the membrane components which interact with quinone and are involved in electron transfer; the catalytic subunits are similar to succinate dehydrogenase SdhAB; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily.
  
 0.878
acsA
AMP-dependent synthetase; Catalyzes the conversion of acetate into acetyl-CoA (AcCoA), an essential intermediate at the junction of anabolic and catabolic pathways. AcsA undergoes a two-step reaction. In the first half reaction, AcsA combines acetate with ATP to form acetyl-adenylate (AcAMP) intermediate. In the second half reaction, it can then transfer the acetyl group from AcAMP to the sulfhydryl group of CoA, forming the product AcCoA; Belongs to the ATP-dependent AMP-binding enzyme family.
  
 0.868
Your Current Organism:
Robbsia andropogonis
NCBI taxonomy Id: 28092
Other names: ATCC 19311 [[Pseudomonas woodsii]], ATCC 23061, Aplanobacter stizolobii, Bacterium andropogoni, Bacterium woodsii, Burkholderia andropogonis, CCUG 32772, CFBP 2421, CIP 105771, DSM 9511, DSM 9884 [[Pseudomonas woodsii]], IBSBF 199, ICMP 2807, ICMP 3967 [[Pseudomonas woodsii]], JCM 10487, LMG 2129, LMG 2362 [[Pseudomonas woodsii]], LMG:2129, LMG:2362 [[Pseudomonas woodsii]], NCPPB 934, NCPPB 968 [[Pseudomonas woodsii]], NRRL B-14296, Paraburkholderia andropogonis, Pseudomonas andropogonis, Pseudomonas stizolobii, Pseudomonas woodsii, R. andropogonis, strain PW 102 [[Pseudomonas woodsii]]
Server load: low (24%) [HD]