STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
rpsF30S ribosomal protein S6; Binds together with S18 to 16S ribosomal RNA. (129 aa)    
Predicted Functional Partners:
rpsI
30S ribosomal protein S9; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS9 family.
   
 0.999
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
   
 
 0.999
rplY
50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily.
  
 
 0.999
rpmI
50S ribosomal protein L35; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL35 family.
  
 
 0.999
rpmF
Some L32 proteins have zinc finger motifs consisting of CXXC while others do not; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL32 family.
 
 
 0.999
rpsO
30S ribosomal protein S15; Forms an intersubunit bridge (bridge B4) with the 23S rRNA of the 50S subunit in the ribosome.
   
 0.999
rpsB
30S ribosomal protein S2; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the universal ribosomal protein uS2 family.
  
 0.999
rplI
50S ribosomal protein L9; Binds to the 23S rRNA.
 
 
 0.999
rpsR
30S ribosomal protein S18; Binds as a heterodimer with protein S6 to the central domain of the 16S rRNA, where it helps stabilize the platform of the 30S subunit; Belongs to the bacterial ribosomal protein bS18 family.
 
 0.999
rpmB
50S ribosomal protein L28; Required for 70S ribosome assembly; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL28 family.
 
 
 0.999
Your Current Organism:
Robbsia andropogonis
NCBI taxonomy Id: 28092
Other names: ATCC 19311 [[Pseudomonas woodsii]], ATCC 23061, Aplanobacter stizolobii, Bacterium andropogoni, Bacterium woodsii, Burkholderia andropogonis, CCUG 32772, CFBP 2421, CIP 105771, DSM 9511, DSM 9884 [[Pseudomonas woodsii]], IBSBF 199, ICMP 2807, ICMP 3967 [[Pseudomonas woodsii]], JCM 10487, LMG 2129, LMG 2362 [[Pseudomonas woodsii]], LMG:2129, LMG:2362 [[Pseudomonas woodsii]], NCPPB 934, NCPPB 968 [[Pseudomonas woodsii]], NRRL B-14296, Paraburkholderia andropogonis, Pseudomonas andropogonis, Pseudomonas stizolobii, Pseudomonas woodsii, R. andropogonis, strain PW 102 [[Pseudomonas woodsii]]
Server load: low (28%) [HD]