STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AMN13843.1Thiamine biosynthesis protein ThiJ; Derived by automated computational analysis using gene prediction method: Protein Homology. (277 aa)    
Predicted Functional Partners:
AMN12235.1
Aldehyde reductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.752
sodC
Superoxide dismutase; Destroys radicals which are normally produced within the cells and which are toxic to biological systems. Belongs to the Cu-Zn superoxide dismutase family.
   
 
 0.606
rpiA
Ribose 5-phosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate.
  
   0.592
AMN12234.1
LysR family transcriptional regulator; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the LysR transcriptional regulatory family.
 
     0.588
rpsJ
30S ribosomal protein S10; Involved in the binding of tRNA to the ribosomes. Belongs to the universal ribosomal protein uS10 family.
   
   0.585
xenA
NADH:flavin oxidoreductase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
    0.579
rplN
50S ribosomal protein L14; Binds to 23S rRNA. Forms part of two intersubunit bridges in the 70S ribosome; Belongs to the universal ribosomal protein uL14 family.
    
   0.528
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
  
   0.432
rpsS
30S ribosomal protein S19; Protein S19 forms a complex with S13 that binds strongly to the 16S ribosomal RNA.
   
   0.431
rplE
50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.
   
   0.431
Your Current Organism:
Alteromonas macleodii
NCBI taxonomy Id: 28108
Other names: A. macleodii, ATCC 27126, Alteromonas sp. F12, CCUG 16128, CIP 103198, DSM 6062, JCM 20772, LMG 2843, LMG:2843, NBRC 102226, Pseudoalteromonas macleodii
Server load: low (12%) [HD]