node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
argS | asnS | ACZ81_05705 | ACZ81_06625 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.898 |
argS | gltX | ACZ81_05705 | ACZ81_06785 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamyl-Q tRNA(Asp) ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. | 0.898 |
argS | ileS | ACZ81_05705 | ACZ81_13245 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.954 |
argS | leuS | ACZ81_05705 | ACZ81_09330 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] | 0.910 |
argS | lysS | ACZ81_05705 | ACZ81_05810 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | lysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. | 0.913 |
argS | metG | ACZ81_05705 | ACZ81_12115 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.950 |
argS | pheS | ACZ81_05705 | ACZ81_08100 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | phenylalanine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. | 0.547 |
argS | proS | ACZ81_05705 | ACZ81_13390 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] | 0.948 |
argS | purL | ACZ81_05705 | ACZ81_04945 | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate. | 0.653 |
asnS | argS | ACZ81_06625 | ACZ81_05705 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | arginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | 0.898 |
asnS | gltX | ACZ81_06625 | ACZ81_06785 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | glutamyl-Q tRNA(Asp) ligase; Catalyzes the attachment of glutamate to tRNA(Glu) in a two- step reaction: glutamate is first activated by ATP to form Glu-AMP and then transferred to the acceptor end of tRNA(Glu); Belongs to the class-I aminoacyl-tRNA synthetase family. Glutamate--tRNA ligase type 1 subfamily. | 0.751 |
asnS | ileS | ACZ81_06625 | ACZ81_13245 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.887 |
asnS | leuS | ACZ81_06625 | ACZ81_09330 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] | 0.876 |
asnS | lysS | ACZ81_06625 | ACZ81_05810 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | lysyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. | 0.785 |
asnS | metG | ACZ81_06625 | ACZ81_12115 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.976 |
asnS | pheS | ACZ81_06625 | ACZ81_08100 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | phenylalanine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family. Phe-tRNA synthetase alpha subunit type 1 subfamily. | 0.608 |
asnS | proS | ACZ81_06625 | ACZ81_13390 | asparaginyl-tRNA synthetase; Derived by automated computational analysis using gene prediction method: Protein Homology. | proline--tRNA ligase; Catalyzes the attachment of proline to tRNA(Pro) in a two- step reaction: proline is first activated by ATP to form Pro-AMP and then transferred to the acceptor end of tRNA(Pro). As ProRS can inadvertently accommodate and process non-cognate amino acids such as alanine and cysteine, to avoid such errors it has two additional distinct editing activities against alanine. One activity is designated as 'pretransfer' editing and involves the tRNA(Pro)-independent hydrolysis of activated Ala-AMP. The other activity is designated 'posttransfer' editing and involves deacy [...] | 0.928 |
fmt | ileS | ACZ81_00095 | ACZ81_13245 | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | isoleucine--tRNA ligase; Catalyzes the attachment of isoleucine to tRNA(Ile). As IleRS can inadvertently accommodate and process structurally similar amino acids such as valine, to avoid such errors it has two additional distinct tRNA(Ile)-dependent editing activities. One activity is designated as 'pretransfer' editing and involves the hydrolysis of activated Val-AMP. The other activity is designated 'posttransfer' editing and involves deacylation of mischarged Val-tRNA(Ile). Belongs to the class-I aminoacyl-tRNA synthetase family. IleS type 1 subfamily. | 0.439 |
fmt | leuS | ACZ81_00095 | ACZ81_09330 | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | leucine--tRNA ligase; LeuRS; class-I aminoacyl-tRNA synthetase; charges leucine by linking carboxyl group to alpha-phosphate of ATP and then transfers aminoacyl-adenylate to its tRNA; due to the large number of codons that tRNA(Leu) recognizes, the leucyl-tRNA synthetase does not recognize the anticodon loop of the tRNA, but instead recognition is dependent on a conserved discriminator base A37 and a long arm; an editing domain hydrolyzes misformed products; in Methanothermobacter thermautotrophicus this enzyme associates with prolyl-tRNA synthetase; Derived by automated computational [...] | 0.575 |
fmt | metG | ACZ81_00095 | ACZ81_12115 | methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family. | methionine--tRNA ligase; Is required not only for elongation of protein synthesis but also for the initiation of all mRNA translation through initiator tRNA(fMet) aminoacylation. | 0.966 |