STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KXB32038.1Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology. (444 aa)    
Predicted Functional Partners:
KXB29198.1
O-acetylhomoserine aminocarboxypropyltransferase; Catalyzes the formation of L-methionine and acetate from O-acetyl-L-homoserine and methanethiol; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.976
KXB32039.1
Alpha/beta hydrolase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
0.962
KXB32703.1
Acyl-phosphate glycerol 3-phosphate acyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 0.954
KXB29889.1
Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate.
  
 
 0.920
KXB29365.1
Homoserine dehydrogenase; Catalyzes the formation of L-aspartate 4-semialdehyde from L-homoserine; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.917
glyA
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
    
 0.910
metZ
O-succinylhomoserine sulfhydrylase; Catalyzes the formation of L-homocysteine from O-succinyl-L- homoserine (OSHS) and hydrogen sulfide.
 
  
 0.896
trpB
Tryptophan synthase subunit beta; The beta subunit is responsible for the synthesis of L- tryptophan from indole and L-serine.
    
 0.890
trpA
Tryptophan synthase subunit alpha; The alpha subunit is responsible for the aldol cleavage of indoleglycerol phosphate to indole and glyceraldehyde 3-phosphate. Belongs to the TrpA family.
     
 0.889
KXB32148.1
Class V aminotransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
     
 0.888
Your Current Organism:
Dechloromonas denitrificans
NCBI taxonomy Id: 281362
Other names: ATCC BAA-841, D. denitrificans, DSM 15892, Dechloromonas denitrificans Horn et al. 2005, strain ED1
Server load: low (16%) [HD]