STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
AKE96333.1Cysteine desulfurase activator complex subunit SufB. (496 aa)    
Predicted Functional Partners:
AKE96331.1
Cysteine desulfurase activator complex subunit SufD.
 
0.999
AKE96332.1
FeS assembly ATPase SufC.
 
 0.999
sufS
Bifunctional cysteine desulfurase/selenocysteine lyase; Cysteine desulfurases mobilize the sulfur from L-cysteine to yield L-alanine, an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Component of the suf operon, which is activated and required under specific conditions such as oxidative stress and iron limitation. Acts as a potent selenocysteine lyase in vitro, that mobilizes selenium from L- selenocysteine. Selenocysteine lyase activity is however unsure in vivo.
 
 0.996
sufE
Cysteine desufuration protein SufE; Participates in cysteine desulfuration mediated by SufS. Cysteine desulfuration mobilizes sulfur from L-cysteine to yield L- alanine and constitutes an essential step in sulfur metabolism for biosynthesis of a variety of sulfur-containing biomolecules. Functions as a sulfur acceptor for SufS, by mediating the direct transfer of the sulfur atom from the S-sulfanylcysteine of SufS, an intermediate product of cysteine desulfuration process; Belongs to the SufE family.
 
 0.990
AKE96334.1
Iron-sulfur cluster assembly scaffold protein; Belongs to the HesB/IscA family.
 
 
 0.988
AKE94711.1
FeS_syn_CsdA domain-containing protein.
 
 0.967
AKE94891.1
FeS cluster assembly scaffold protein; A scaffold on which IscS assembles Fe-S clusters. It is likely that Fe-S cluster coordination is flexible as the role of this complex is to build and then hand off Fe-S clusters.
  
  
 0.802
iscA
FeS cluster assembly protein; Is able to transfer iron-sulfur clusters to apo-ferredoxin. Multiple cycles of [2Fe2S] cluster formation and transfer are observed, suggesting that IscA acts catalytically. Recruits intracellular free iron so as to provide iron for the assembly of transient iron-sulfur cluster in IscU in the presence of IscS, L-cysteine and the thioredoxin reductase system TrxA/TrxB.
  
 
 0.755
AKE94710.1
FeS_syn_CsdE domain-containing protein.
 
 
 0.749
nfuA
Fe/S biogenesis protein; Involved in iron-sulfur cluster biogenesis. Binds a 4Fe-4S cluster, can transfer this cluster to apoproteins, and thereby intervenes in the maturation of Fe/S proteins. Could also act as a scaffold/chaperone for damaged Fe/S proteins.
  
 
 0.688
Your Current Organism:
Cronobacter sakazakii
NCBI taxonomy Id: 28141
Other names: ATCC 29544, C. sakazakii, CCUG 14558, CDC 4562-70 (78-067947), CIP 103183, Cronobacter sakazakii subsp. sakazakii, DSM 4485, Enterobacter sakazakii, LMG 5740, LMG:5740, NBRC 102416, NCTC 11467, yellow -pigmented Enterobacter cloacae
Server load: low (18%) [HD]