STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
purBpurB: adenylosuccinate lyase; [F] COG0015 Adenylosuccinate lyase; Belongs to the lyase 1 family. Adenylosuccinate lyase subfamily. (456 aa)    
Predicted Functional Partners:
purC
purC: phosphoribosylaminoimidazolesuccinocarboxamide synthase; [F] COG0152 Phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR) synthase; Belongs to the SAICAR synthetase family.
  
 0.993
purH
purH: phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase; [F] COG0138 AICAR transformylase/IMP cyclohydrolase PurH (only IMP cyclohydrolase domain in Aful).
  
 0.993
purA
Adenylosuccinate synthase; Plays an important role in the de novo pathway of purine nucleotide biosynthesis. Catalyzes the first committed step in the biosynthesis of AMP from IMP; Belongs to the adenylosuccinate synthetase family.
  
 0.992
purL
Phosphoribosylformylglycinamidine synthase; Phosphoribosylformylglycinamidine synthase involved in the purines biosynthetic pathway. Catalyzes the ATP-dependent conversion of formylglycinamide ribonucleotide (FGAR) and glutamine to yield formylglycinamidine ribonucleotide (FGAM) and glutamate.
  
  
 0.990
apt
Adenine phosphoribosyltransferase; Catalyzes a salvage reaction resulting in the formation of AMP, that is energically less costly than de novo synthesis.
  
 0.958
adk
Adenylate kinase family protein; Catalyzes the reversible transfer of the terminal phosphate group between ATP and AMP. Plays an important role in cellular energy homeostasis and in adenine nucleotide metabolism; Belongs to the adenylate kinase family.
   
 0.953
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine; In the C-terminal section; belongs to the purine/pyrimidine phosphoribosyltransferase family.
  
 
 0.944
purD
purD: phosphoribosylamine--glycine ligase; [F] COG0151 Phosphoribosylamine-glycine ligase; Belongs to the GARS family.
  
 
 0.940
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 
 0.932
surE
5'/3'-nucleotidase SurE; Nucleotidase with a broad substrate specificity as it can dephosphorylate various ribo- and deoxyribonucleoside 5'-monophosphates and ribonucleoside 3'-monophosphates with highest affinity to 3'-AMP. Also hydrolyzes polyphosphate (exopolyphosphatase activity) with the preference for short-chain-length substrates (P20-25). Might be involved in the regulation of dNTP and NTP pools, and in the turnover of 3'-mononucleotides produced by numerous intracellular RNases (T1, T2, and F) during the degradation of various RNAs.
    
 0.930
Your Current Organism:
Yersinia kristensenii
NCBI taxonomy Id: 28152
Other names: ATCC 33638, CCUG 11294, CCUG 8241, CIP 80.30, DSM 18543, JCM 7576, NCTC 11471, Y. kristensenii, strain 105
Server load: low (26%) [HD]