STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
OEJ64018.1Heat-shock protein Hsp20; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the small heat shock protein (HSP20) family. (153 aa)    
Predicted Functional Partners:
clpB
ATP-dependent chaperone ClpB; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family.
  
 
 0.798
OEJ64017.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.672
grpE
Nucleotide exchange factor GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds [...]
  
  
 0.665
htpG
Molecular chaperone HtpG; Molecular chaperone. Has ATPase activity.
  
  
 0.593
OEJ64433.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
    0.555
hscA
Fe-S protein assembly chaperone HscA; Chaperone involved in the maturation of iron-sulfur cluster- containing proteins. Has a low intrinsic ATPase activity which is markedly stimulated by HscB.
  
 
 0.544
dnaK
Molecular chaperone DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.544
hslU
HslU--HslV peptidase ATPase subunit; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
   
  
 0.508
hslV
HslU--HslV peptidase proteolytic subunit; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
   
  
 0.500
accD
acetyl-CoA carboxylase subunit beta; Component of the acetyl coenzyme A carboxylase (ACC) complex. Biotin carboxylase (BC) catalyzes the carboxylation of biotin on its carrier protein (BCCP) and then the CO(2) group is transferred by the transcarboxylase to acetyl-CoA to form malonyl-CoA; Belongs to the AccD/PCCB family.
   
    0.445
Your Current Organism:
Magnetovibrio blakemorei
NCBI taxonomy Id: 28181
Other names: DSM 18854, M. blakemorei, Magnetovibrio blakemorei Bazylinski et al. 2013, magnetite-containing magnetic vibrio, strain MV-1
Server load: low (24%) [HD]