STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
def-2Peptide deformylase; Removes the formyl group from the N-terminal Met of newly synthesized proteins. Requires at least a dipeptide for an efficient rate of reaction. N-terminal L-methionine is a prerequisite for activity but the enzyme has broad specificity at other positions. (184 aa)    
Predicted Functional Partners:
fmt
methionyl-tRNA formyltransferase; Attaches a formyl group to the free amino group of methionyl- tRNA(fMet). The formyl group appears to play a dual role in the initiator identity of N-formylmethionyl-tRNA by promoting its recognition by IF2 and preventing the misappropriation of this tRNA by the elongation apparatus; Belongs to the Fmt family.
 0.961
rpsU
30S ribosomal protein S21; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS21 family.
  
 
 0.956
rplT
50S ribosomal protein L20; Binds directly to 23S ribosomal RNA and is necessary for the in vitro assembly process of the 50S ribosomal subunit. It is not involved in the protein synthesizing functions of that subunit.
 
   0.922
rpsP
30S ribosomal protein S16; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bS16 family.
 
   0.913
rplU
50S ribosomal protein L21; This protein binds to 23S rRNA in the presence of protein L20; Belongs to the bacterial ribosomal protein bL21 family.
 
 
 0.913
rplX
50S ribosomal protein L24; One of the proteins that surrounds the polypeptide exit tunnel on the outside of the subunit.
  
   0.910
rpmA
50S ribosomal protein L27; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the bacterial ribosomal protein bL27 family.
 
   0.900
tig
Trigger factor; Involved in protein export. Acts as a chaperone by maintaining the newly synthesized protein in an open conformation. Functions as a peptidyl-prolyl cis-trans isomerase; Belongs to the FKBP-type PPIase family. Tig subfamily.
  
 
 0.898
rplD
50S ribosomal protein L4; Forms part of the polypeptide exit tunnel.
  
 
   0.893
rpsT
30S ribosomal protein S20; Binds directly to 16S ribosomal RNA.
  
 
 0.893
Your Current Organism:
Magnetovibrio blakemorei
NCBI taxonomy Id: 28181
Other names: DSM 18854, M. blakemorei, Magnetovibrio blakemorei Bazylinski et al. 2013, magnetite-containing magnetic vibrio, strain MV-1
Server load: low (24%) [HD]