STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
R7TFT2_CAPTEUncharacterized protein. (283 aa)    
Predicted Functional Partners:
R7T3T3_CAPTE
SAC domain-containing protein.
    
 
 0.966
R7TX75_CAPTE
Coatomer subunit alpha; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network.
    
 
 0.709
R7VLK3_CAPTE
COPI_C domain-containing protein.
    
 
 0.709
R7VFG1_CAPTE
J domain-containing protein.
   
 
 0.676
R7T3W8_CAPTE
Coatomer subunit delta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins.
    
 
 0.645
R7TBK4_CAPTE
Coatomer subunit delta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins.
    
 
 0.645
R7U925_CAPTE
Coatomer subunit delta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins.
    
 
 0.645
R7TL41_CAPTE
NTP_transferase domain-containing protein.
    
 
 0.620
R7V8G1_CAPTE
Coatomer subunit beta; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non-clathrin- coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine-tagged proteins.
    
 
 0.620
R7U6A8_CAPTE
TIP120 domain-containing protein.
 
  
   0.582
Your Current Organism:
Capitella teleta
NCBI taxonomy Id: 283909
Other names: C. teleta, Capitella sp. I, Capitella sp. I AF-2005, Capitella sp. I ECS-2004, Capitella sp. I ES-2005, Capitella sp. MKJ-2016, Capitella teleta Blake, Grassle & Eckelbarger, 2009
Server load: low (22%) [HD]