STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
DR97_1644Displays ATPase and GTPase activities (286 aa)    
Predicted Functional Partners:
ptsN
Seems to have a role in regulating nitrogen assimilation.
 
  
 0.955
raiA
Ribosome hibernation promoting factor; yfiA: ribosomal subunit interface protein
 
    0.903
ptsH
General (non sugar-specific) component of the phosphoenolpyruvate-dependent sugar phosphotransferase system (sugar PTS). This major carbohydrate active-transport system catalyzes the phosphorylation of incoming sugar substrates concomitantly with their translocation across the cell membrane. The phosphoryl group from phosphoenolpyruvate (PEP) is transferred to the phosphoryl carrier protein HPr by enzyme I. Phospho-HPr then transfers it to the PTS EIIA domain
  
  
 0.878
rpoN
Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released
 
  
 0.823
NagF
PTS_I_fam: phosphoenolpyruvate-protein phosphotransferase
  
  
 0.695
kdsD
Involved in the biosynthesis of 3-deoxy-D-manno-octulosonate (KDO), a unique 8-carbon sugar component of lipopolysaccharides (LPSs). Catalyzes the reversible aldol-ketol isomerization between D-ribulose 5-phosphate (Ru5P) and D-arabinose 5-phosphate (A5P).
  
    0.641
lptA
Involved in the assembly of lipopolysaccharide (LPS). Required for the translocation of LPS from the inner membrane to the outer membrane. May form a bridge between the inner membrane and the outer membrane, via interactions with LptC and LptD, thereby facilitating LPS transfer across the periplasm
  
  
 0.638
ribD
Converts 2,5-diamino-6-(ribosylamino)-4(3h)-pyrimidinone 5'- phosphate into 5-amino-6-(ribosylamino)-2,4(1h,3h)-pyrimidinedione 5'- phosphate
 
     0.623
fruI
Belongs to the PEP-utilizing enzyme family.
  
  
 0.614
glmS
Catalyzes the first step in hexosamine metabolism, converting fructose-6P into glucosamine-6P using glutamine as a nitrogen source.
     
 0.608
Your Current Organism:
Pseudomonas aeruginosa
NCBI taxonomy Id: 287
Other names: ATCC 10145, ATCC 10145-U, Bacillus aeruginosus, Bacillus pyocyaneus, Bacterium aeruginosum, Bacterium pyocyaneum, CCEB 481, CCUG 28447, CCUG 29297, CCUG 551, CFBP 2466, CIP 100720, DSM 50071, IBCS 277, IFO 12689, JCM 5962, Micrococcus pyocyaneus, NBRC 12689, NCCB 76039, NCIB 8295, NCIMB 8295, NCTC 10332, NRRL B-771, P. aeruginosa, Pseudomonas polycolor, Pseudomonas pyocyanea, Pseudomonas sp. RV3, RH 815, VKM B-588, bacterium ASFP-37, bacterium ASFP-38, bacterium ASFP-45, bacterium ASFP-46, bacterium ASFP-48
Server load: low (3%) [HD]