node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
aroA | aroC | DR97_4772 | DR97_207 | annotation not available | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | 0.996 |
aroA | aroQ | DR97_4772 | DR97_2554 | annotation not available | Putative chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. The joint presence of this enzyme together with cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment comprises a complete three-step chorismate to phenylalanine pathway and accounts for the so called hidden overflow pathway to phenylalanine in P.aeruginosa, in which two possible routes for it exists, namely either via phenylpyruvate or L-arogenate | 0.985 |
aroA | aspC | DR97_4772 | DR97_4790 | annotation not available | Aminotransferase class i and ii family protein; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family | 0.961 |
aroA | pheA | DR97_4772 | DR97_4770 | annotation not available | Chorismate mutase / prephenate dehydratase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate | 0.998 |
aroA | pheC | DR97_4772 | DR97_4446 | annotation not available | Cyclohexadienyl dehydratase precursor; Forms alternative pathway for phenylalanine biosynthesis. Can catalyze two reactions: prephenate dehydratase and arogenate dehydratase. May have a role in chemotaxis or transport | 0.904 |
aroA | phhC | DR97_4772 | DR97_1073 | annotation not available | Aminotransferase class i and ii family protein; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family | 0.961 |
aroA | phnA | DR97_4772 | DR97_946 | annotation not available | Anthranilate synthase component i; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...] | 0.646 |
aroA | phnB | DR97_4772 | DR97_944 | annotation not available | Anthranilate synthase component ii; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...] | 0.679 |
aroA | trpE | DR97_4772 | DR97_3578 | annotation not available | Anthranilate synthase component i; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...] | 0.693 |
aroA | trpG | DR97_4772 | DR97_3602 | annotation not available | Anthranilate synthase component ii; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concent [...] | 0.716 |
aroC | aroA | DR97_207 | DR97_4772 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | annotation not available | 0.996 |
aroC | aroQ | DR97_207 | DR97_2554 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Putative chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. The joint presence of this enzyme together with cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment comprises a complete three-step chorismate to phenylalanine pathway and accounts for the so called hidden overflow pathway to phenylalanine in P.aeruginosa, in which two possible routes for it exists, namely either via phenylpyruvate or L-arogenate | 0.951 |
aroC | pheA | DR97_207 | DR97_4770 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Chorismate mutase / prephenate dehydratase; Catalyzes the Claisen rearrangement of chorismate to prephenate and the decarboxylation/dehydration of prephenate to phenylpyruvate | 0.993 |
aroC | pheC | DR97_207 | DR97_4446 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Cyclohexadienyl dehydratase precursor; Forms alternative pathway for phenylalanine biosynthesis. Can catalyze two reactions: prephenate dehydratase and arogenate dehydratase. May have a role in chemotaxis or transport | 0.552 |
aroC | phnA | DR97_207 | DR97_946 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Anthranilate synthase component i; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...] | 0.958 |
aroC | phnB | DR97_207 | DR97_944 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Anthranilate synthase component ii; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, a precursor for Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) production which is required to induce the genes for the biosynthesis of the virulence factor pyocyanine (PCN), a characteristic blue-green phenazine pigment produced by P.aeruginosa. In the first step, the glutamine-binding beta subunit (PhnB) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with [...] | 0.963 |
aroC | trpE | DR97_207 | DR97_3578 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Anthranilate synthase component i; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concentr [...] | 0.954 |
aroC | trpG | DR97_207 | DR97_3602 | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | Anthranilate synthase component ii; Part of a heterotetrameric complex that catalyzes the two- step biosynthesis of anthranilate, an intermediate in the biosynthesis of L-tryptophan. In the first step, the glutamine-binding beta subunit (TrpG) of anthranilate synthase (AS) provides the glutamine amidotransferase activity which generates ammonia as a substrate that, along with chorismate, is used in the second step, catalyzed by the large alpha subunit of AS (TrpE) to produce anthranilate. In the absence of TrpG, TrpE can synthesize anthranilate directly from chorismate and high concent [...] | 0.950 |
aroQ | aroA | DR97_2554 | DR97_4772 | Putative chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. The joint presence of this enzyme together with cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment comprises a complete three-step chorismate to phenylalanine pathway and accounts for the so called hidden overflow pathway to phenylalanine in P.aeruginosa, in which two possible routes for it exists, namely either via phenylpyruvate or L-arogenate | annotation not available | 0.985 |
aroQ | aroC | DR97_2554 | DR97_207 | Putative chorismate mutase; Catalyzes the Claisen rearrangement of chorismate to prephenate. The joint presence of this enzyme together with cyclohexadienyl dehydratase and aromatic aminotransferase in the periplasmic compartment comprises a complete three-step chorismate to phenylalanine pathway and accounts for the so called hidden overflow pathway to phenylalanine in P.aeruginosa, in which two possible routes for it exists, namely either via phenylpyruvate or L-arogenate | Chorismate synthase; Catalyzes the anti-1,4-elimination of the C-3 phosphate and the C-6 proR hydrogen from 5-enolpyruvylshikimate-3-phosphate (EPSP) to yield chorismate, which is the branch point compound that serves as the starting substrate for the three terminal pathways of aromatic amino acid biosynthesis. This reaction introduces a second double bond into the aromatic ring system | 0.951 |