node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
SIT75668.1 | SIT80668.1 | SAMN05421665_0235 | SAMN05421665_1142 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH dehydrogenase subunit M. | 0.998 |
SIT75668.1 | SIT82652.1 | SAMN05421665_0235 | SAMN05421665_1507 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Formate dehydrogenase. | 0.994 |
SIT75668.1 | SIT87877.1 | SAMN05421665_0235 | SAMN05421665_2561 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.995 |
SIT75668.1 | SIT87881.1 | SAMN05421665_0235 | SAMN05421665_2562 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Ubiquinol-cytochrome c reductase cytochrome b subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
SIT75668.1 | SIT91663.1 | SAMN05421665_0235 | SAMN05421665_3439 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome c oxidase subunit 2; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.999 |
SIT75668.1 | SIT91678.1 | SAMN05421665_0235 | SAMN05421665_3443 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome c oxidase subunit 3. | 0.999 |
SIT75668.1 | SIT92105.1 | SAMN05421665_0235 | SAMN05421665_3570 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Sulfur dehydrogenase subunit SoxD. | 0.937 |
SIT75668.1 | ctaB | SAMN05421665_0235 | SAMN05421665_3440 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Protoheme IX farnesyltransferase; Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group; Belongs to the UbiA prenyltransferase family. Protoheme IX farnesyltransferase subfamily. | 0.996 |
SIT75668.1 | ctaG | SAMN05421665_0235 | SAMN05421665_3442 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | Cytochrome c oxidase assembly protein subunit 11; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I; Belongs to the COX11/CtaG family. | 0.927 |
SIT75668.1 | nuoH | SAMN05421665_0235 | SAMN05421665_1149 | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.995 |
SIT80668.1 | SIT75668.1 | SAMN05421665_1142 | SAMN05421665_0235 | NADH dehydrogenase subunit M. | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.998 |
SIT80668.1 | SIT82652.1 | SAMN05421665_1142 | SAMN05421665_1507 | NADH dehydrogenase subunit M. | Formate dehydrogenase. | 0.999 |
SIT80668.1 | SIT87877.1 | SAMN05421665_1142 | SAMN05421665_2561 | NADH dehydrogenase subunit M. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.976 |
SIT80668.1 | SIT87881.1 | SAMN05421665_1142 | SAMN05421665_2562 | NADH dehydrogenase subunit M. | Ubiquinol-cytochrome c reductase cytochrome b subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |
SIT80668.1 | SIT91663.1 | SAMN05421665_1142 | SAMN05421665_3439 | NADH dehydrogenase subunit M. | Cytochrome c oxidase subunit 2; Subunits I and II form the functional core of the enzyme complex. Electrons originating in cytochrome c are transferred via heme a and Cu(A) to the binuclear center formed by heme a3 and Cu(B). | 0.997 |
SIT80668.1 | SIT91678.1 | SAMN05421665_1142 | SAMN05421665_3443 | NADH dehydrogenase subunit M. | Cytochrome c oxidase subunit 3. | 0.998 |
SIT80668.1 | nuoH | SAMN05421665_1142 | SAMN05421665_1149 | NADH dehydrogenase subunit M. | NADH dehydrogenase subunit H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. | 0.999 |
SIT82652.1 | SIT75668.1 | SAMN05421665_1507 | SAMN05421665_0235 | Formate dehydrogenase. | Cytochrome c oxidase subunit 1; Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B. | 0.994 |
SIT82652.1 | SIT80668.1 | SAMN05421665_1507 | SAMN05421665_1142 | Formate dehydrogenase. | NADH dehydrogenase subunit M. | 0.999 |
SIT82652.1 | SIT87877.1 | SAMN05421665_1507 | SAMN05421665_2561 | Formate dehydrogenase. | Ubiquinol-cytochrome c reductase iron-sulfur subunit; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex), which is a respiratory chain that generates an electrochemical potential coupled to ATP synthesis. | 0.999 |