STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
fhsFormate--tetrahydrofolate ligase; Belongs to the formate--tetrahydrofolate ligase family. (564 aa)    
Predicted Functional Partners:
folD
Tetrahydrofolate dehydrogenase/cyclohydrolase; Catalyzes the oxidation of 5,10-methylenetetrahydrofolate to 5,10-methenyltetrahydrofolate and then the hydrolysis of 5,10- methenyltetrahydrofolate to 10-formyltetrahydrofolate.
 
 
 0.995
purH
Phosphoribosylaminoimidazolecarboxamide formyltransferase; IMP cyclohydrolase.
  
 0.981
purN
Phosphoribosylglycinamide formyltransferase; Catalyzes the transfer of a formyl group from 10- formyltetrahydrofolate to 5-phospho-ribosyl-glycinamide (GAR), producing 5-phospho-ribosyl-N-formylglycinamide (FGAR) and tetrahydrofolate.
  
 0.965
glyA
Glycine/serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.959
glyA-2
Serine hydroxymethyltransferase; Catalyzes the reversible interconversion of serine and glycine with tetrahydrofolate (THF) serving as the one-carbon carrier. This reaction serves as the major source of one-carbon groups required for the biosynthesis of purines, thymidylate, methionine, and other important biomolecules. Also exhibits THF-independent aldolase activity toward beta-hydroxyamino acids, producing glycine and aldehydes, via a retro-aldol mechanism.
  
 0.959
gcvT
Glycine cleavage system T protein; The glycine cleavage system catalyzes the degradation of glycine.
  
 0.946
ABY22698.1
Dihydrofolate reductase; Key enzyme in folate metabolism. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis.
  
 
 0.913
ABY22001.1
Isocitrate dehydrogenase (NADP); Belongs to the isocitrate and isopropylmalate dehydrogenases family.
 
 
  
 0.880
gcvP
Glycine dehydrogenase (decarboxylating); The glycine cleavage system catalyzes the degradation of glycine. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein; Belongs to the GcvP family.
  
  
 0.807
purC
Phosphoribosylamidoimidazole-succinocarboxamide synthase; Belongs to the SAICAR synthetase family.
  
 
 0.792
Your Current Organism:
Renibacterium salmoninarum
NCBI taxonomy Id: 288705
Other names: R. salmoninarum ATCC 33209, Renibacterium salmoninarum ATCC 33209, Renibacterium salmoninarum str. ATCC 33209, Renibacterium salmoninarum strain ATCC 33209
Server load: low (14%) [HD]