STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
EI16_09950Thioredoxin; Derived by automated computational analysis using gene prediction method: Protein Homology. (287 aa)    
Predicted Functional Partners:
EI16_06470
Catalyzes the reduction of 2 glutathione to glutathione disulfide; maintains high levels of reduced glutathione in the cytosol; involved in redox regulation and oxidative defense; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
 
 0.846
hslU
ATP-dependent protease ATP-binding subunit HslU; ATPase subunit of a proteasome-like degradation complex; this subunit has chaperone activity. The binding of ATP and its subsequent hydrolysis by HslU are essential for unfolding of protein substrates subsequently hydrolyzed by HslV. HslU recognizes the N-terminal part of its protein substrates and unfolds these before they are guided to HslV for hydrolysis.
   
 
 0.747
hslV
ATP-dependent protease subunit HslV; Protease subunit of a proteasome-like degradation complex believed to be a general protein degrading machinery.
  
  
 0.726
TrxB
Thioredoxin reductase; Catalyzes the transfer of electrons from NADPH to thioredoxin; FAD/NAD(P) binding; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.718
grpE
Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent i [...]
  
  
 0.711
EI16_09345
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
   
    0.659
dnaJ
Molecular chaperone DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, [...]
 
 
 0.656
groEL
Molecular chaperone GroEL; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions.
  
 
 0.619
LpdA
Dihydrolipoamide dehydrogenase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 
 0.611
EI16_09945
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology.
       0.598
Your Current Organism:
Hydrogenovibrio marinus
NCBI taxonomy Id: 28885
Other names: DSM 11271, H. marinus, Hydrogenivibrio marinus, JCM 7688, strain MH-110
Server load: low (20%) [HD]