STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
KSV58058.1Phosphoribosylpyrophosphate synthetase; Catalyzes the formation of PRPP from ATP and ribose 5-phosphate; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the ribose-phosphate pyrophosphokinase family. (390 aa)    
Predicted Functional Partners:
KSV60228.1
NADH oxidase; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
 0.995
KSV59437.1
Hypothetical protein; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the low molecular weight phosphotyrosine protein phosphatase family.
    
 0.913
KSV58319.1
UDP-N-acetylglucosamine pyrophosphorylase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
  
 0.887
KSV59797.1
Phosphoribosylformylglycinamidine synthase; Catalyzes the formation of 2-(formamido)-N1-(5-phospho-D-ribosyl)acetamidine from N2-formyl-N1-(5-phospho-D-ribosyl)glycinamide and L-glutamine in purine biosynthesis; Derived by automated computational analysis using gene prediction method: Protein Homology.
  
  
 0.865
guaB
Inosine-5'-monophosphate dehydrogenase; Catalyzes the conversion of inosine 5'-phosphate (IMP) to xanthosine 5'-phosphate (XMP), the first committed and rate-limiting step in the de novo synthesis of guanine nucleotides, and therefore plays an important role in the regulation of cell growth. Belongs to the IMPDH/GMPR family.
  
 
 0.850
guaA
GMP synthetase; Catalyzes the synthesis of GMP from XMP.
  
  
 0.844
purF
Amidophosphoribosyltransferase; Catalyzes the formation of phosphoribosylamine from phosphoribosylpyrophosphate (PRPP) and glutamine.
  
 0.840
lysS
lysine--tRNA ligase; Derived by automated computational analysis using gene prediction method: Protein Homology; Belongs to the class-II aminoacyl-tRNA synthetase family.
   
 
 0.835
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit; Belongs to the universal ribosomal protein uL3 family.
   
 
 0.822
KSV59484.1
Orotate phosphoribosyltransferase; Derived by automated computational analysis using gene prediction method: Protein Homology.
 
 
 0.812
Your Current Organism:
Acetivibrio ethanolgignens
NCBI taxonomy Id: 290052
Other names: A. ethanolgignens, ATCC 33324, Acetivibrio ethanoligignens, DSM 3005, LMG 7055, LMG:7055, strain 77-6
Server load: low (14%) [HD]