STRINGSTRING
dnaK protein (Chlorobium limicola) - STRING interaction network
"dnaK" - Chaperone protein DnaK in Chlorobium limicola
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
some 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
dnaKChaperone protein DnaK; Acts as a chaperone (639 aa)    
Predicted Functional Partners:
grpE
Protein GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP- dependent [...] (209 aa)
 
 
  0.974
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...] (401 aa)
 
 
  0.912
groL
60 kDa chaperonin; Prevents misfolding and promotes the refolding and proper assembly of unfolded polypeptides generated under stress conditions (547 aa)
 
 
  0.877
hrcA
Heat-inducible transcription repressor HrcA; Negative regulator of class I heat shock genes (grpE- dnaK-dnaJ and groELS operons). Prevents heat-shock induction of these operons (357 aa)
   
   
  0.843
Clim_1763
Uncharacterized protein; KEGG- bth-BT_2774 putative adenylate cyclase (515 aa)
   
 
  0.829
gyrA
DNA gyrase subunit A; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (828 aa)
   
 
 
  0.751
Clim_0762
PFAM- heat shock protein Hsp20; KEGG- plt-Plut_0622 heat shock protein, HSP20 family; Belongs to the small heat shock protein (HSP20) family (134 aa)
   
 
  0.733
gyrB
DNA gyrase subunit B; A type II topoisomerase that negatively supercoils closed circular double-stranded (ds) DNA in an ATP-dependent manner to modulate DNA topology and maintain chromosomes in an underwound state. Negative supercoiling favors strand separation, and DNA replication, transcription, recombination and repair, all of which involve strand separation. Also able to catalyze the interconversion of other topological isomers of dsDNA rings, including catenanes and knotted rings. Type II topoisomerases break and join 2 DNA strands simultaneously in an ATP-dependent manner (643 aa)
   
 
  0.727
htpG
Chaperone protein HtpG; Molecular chaperone. Has ATPase activity (633 aa)
     
 
  0.717
thrS
Threonine--tRNA ligase; Catalyzes the attachment of threonine to tRNA(Thr) in a two-step reaction- L-threonine is first activated by ATP to form Thr-AMP and then transferred to the acceptor end of tRNA(Thr). Also edits incorrectly charged L-seryl-tRNA(Thr) (657 aa)
   
 
  0.702
Your Current Organism:
Chlorobium limicola
NCBI taxonomy Id: 290315
Other names: C. limicola DSM 245, Chlorobium limicola, Chlorobium limicola 6330, Chlorobium limicola DSM 245, Chlorobium limicola DSM245, Chlorobium limicola DSMZ 245(T), Chlorobium limicola str. DSM 245, Chlorobium limicola strain DSM 245
Server load: low (8%) [HD]