STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
clpB-2ClpA/ClpB family protein; Part of a stress-induced multi-chaperone system, it is involved in the recovery of the cell from heat-induced damage, in cooperation with DnaK, DnaJ and GrpE; Belongs to the ClpA/ClpB family. (885 aa)    
Predicted Functional Partners:
dnaK-2
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
  
 
 0.919
dnaK
Chaperone protein DnaK; Acts as a chaperone; Belongs to the heat shock protein 70 family.
 
 
 0.908
clpP-2
Putative ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
 0.865
clpP
ATP-dependent Clp protease, proteolytic subunit ClpP; Cleaves peptides in various proteins in a process that requires ATP hydrolysis. Has a chymotrypsin-like activity. Plays a major role in the degradation of misfolded proteins. Belongs to the peptidase S14 family.
 
 
 0.865
dnaJ
Chaperone protein DnaJ; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins and by disaggregating proteins, also in an autonomous, DnaK-independent fashion. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-dependent interactions between DnaJ, D [...]
  
 
 0.850
grpE
Co-chaperone GrpE; Participates actively in the response to hyperosmotic and heat shock by preventing the aggregation of stress-denatured proteins, in association with DnaK and GrpE. It is the nucleotide exchange factor for DnaK and may function as a thermosensor. Unfolded proteins bind initially to DnaJ; upon interaction with the DnaJ-bound protein, DnaK hydrolyzes its bound ATP, resulting in the formation of a stable complex. GrpE releases ADP from DnaK; ATP binding to DnaK triggers the release of the substrate protein, thus completing the reaction cycle. Several rounds of ATP-depend [...]
  
 
 0.831
AAur_3285
Identified by match to protein family HMM PF00012.
  
 
 0.829
AAur_1187
Putative heat shock protein; Identified by match to protein family HMM PF00011; Belongs to the small heat shock protein (HSP20) family.
  
 
 0.754
clpS
ATP-dependent Clp protease adaptor protein clpS; Involved in the modulation of the specificity of the ClpAP- mediated ATP-dependent protein degradation; Belongs to the ClpS family.
  
 
 0.724
AAur_1188
Putative DnaJ domain protein; Identified by match to protein family HMM PF00226.
 
 
 0.711
Your Current Organism:
Paenarthrobacter aurescens
NCBI taxonomy Id: 290340
Other names: Arthrobacter aurescens TC1, P. aurescens TC1, Paenarthrobacter aurescens TC1
Server load: low (10%) [HD]