STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
ndhOCyanobacterial and plant NDH-1 subunit O; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. (81 aa)    
Predicted Functional Partners:
ndhN
NADH-quinone oxidoreductase cyanobacterial subunit N; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
  
 
 
 0.990
ndhH
NADH:ubiquinone oxidoreductase 49 kD subunit 7; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
    
 
 0.980
ndhM
Cyanobacterial and plastid NDH-1 subunit M; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
  
 
 
 0.979
ndhK
NADH-quinone oxidoreductase, B subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration; Belongs to the complex I 20 kDa subunit family.
    
 
 0.965
AFY30215.1
Ferredoxin, (2Fe-2S); PFAM: 2Fe-2S iron-sulfur cluster binding domain; TIGRFAM: ferredoxin [2Fe-2S].
    
 
 0.954
AFY27530.1
PFAM: CO2 hydration protein (ChpXY); TIGRFAM: CO2 hydration protein.
  
 
   0.935
AFY27895.1
PFAM: Protein of unknown function (DUF2996).
  
 
   0.935
ndhL
NADH dehydrogenase transmembrane subunit; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.
  
 
 
 0.908
ndhI
NADH-plastoquinone oxidoreductase subunit I protein; NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient; Belongs to the complex I 23 kDa subunit family.
  
 
 
 0.886
AFY27225.1
PFAM: CO2 hydration protein (ChpXY); TIGRFAM: CO2 hydration protein.
  
 
   0.860
Your Current Organism:
Cyanobium gracile
NCBI taxonomy Id: 292564
Other names: C. gracile PCC 6307, Coccochloris peniocystis UTCC 70 (no longer available), Coccochloris peniocystis UTCC 71, Cyanobium gracile PCC 6307, Synechococcus sp. ATCC 27147, Synechococcus sp. PCC 6307
Server load: low (26%) [HD]