STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CD943_02960Unannotated protein. (110 aa)    
Predicted Functional Partners:
CD943_02965
Unannotated protein.
 
     0.910
nuoI
Unannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
  
 0.542
mutB
Unannotated protein.
     
 0.479
sdhC
Unannotated protein.
   
  
 0.445
nuoD
Unannotated protein; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I 49 kDa subunit family.
  
  
 0.442
Your Current Organism:
Brevundimonas diminuta
NCBI taxonomy Id: 293
Other names: AJ 2067, ATCC 11568, B. diminuta, BCRC 11894, Bacterium parvulum, CCEB 513, CCRC 11894, CCRC:11894, CECT 317, CIP 63.27, DSM 7234, IAM 12691, IFO 12697, IMET 10409, JCM 2788, LMG 2088, LMG 2089, LMG:2088, LMG:2089, NBRC 12697, NCAIM B.01118, NCCB 76050, NCIB 9393, NCIMB 9393, NCTC 8545, Pseudomonas diminuta
Server load: low (16%) [HD]