STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CEL27450.1Glyoxalase-like domain protein. (122 aa)    
Predicted Functional Partners:
dan
D-aminoacylase.
 
     0.622
rpiR_1
HTH-type transcriptional regulator RpiR.
       0.515
gntT_1
High-affinity gluconate transporter.
       0.483
nuoC
NADH-quinone oxidoreductase subunit C/D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family.
  
  
 0.463
nuoI
NADH-quinone oxidoreductase subunit I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.
  
  
 0.435
fdx_2
Ferredoxin.
  
  
 0.435
sdhC
Succinate dehydrogenase cytochrome b556 subunit.
  
  
 0.417
birA
Bifunctional ligase/repressor BirA.
  
    0.413
CEL30443.1
Aminoglycoside/hydroxyurea antibiotic resistance kinase.
 
     0.406
Your Current Organism:
Pseudomonas fluorescens
NCBI taxonomy Id: 294
Other names: ATCC 13525, Bacillus fluorescens, Bacillus fluorescens liquefaciens, Bacterium fluorescen, CCEB 546, CFBP 2102, CIP 69.13, DSM 50090, IAM 12022, IFO 14160, JCM 5963, Liquidomonas fluorescens, NBRC 14160, NCCB 76040, NCIB 9046, NCIB:9046, NCIMB 9046, NCTC 10038, NRRL B-14678, P. fluorescens, Pseudomonas sp. AU2390, Pseudomonas sp. BZ64, Pseudomonas sp. FY32, Pseudomonas sp. HSA2/2016, Pseudomonas sp. HSA3/2016, Pseudomonas sp. ISSDS-433, Pseudomonas sp. JCM 17186, Pseudomonas sp. JCM 2779, Pseudomonas sp. KH-20150KS3, Pseudomonas sp. LBUM223, Pseudomonas sp. LBUM636, Pseudomonas sp. SM2/2016, RH 818, VKM B-894, bacterium P1-1, strain M. Rhodes 28/5
Server load: low (26%) [HD]