STRINGSTRING
STRING protein interaction network
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
Neighborhood
Gene Fusion
Cooccurrence
Coexpression
Experiments
Databases
Textmining
[Homology]
Score
CEL27563.1Hypothetical protein. (174 aa)    
Predicted Functional Partners:
rluD
Ribosomal large subunit pseudouridine synthase D; Responsible for synthesis of pseudouridine from uracil. Belongs to the pseudouridine synthase RluA family.
   
 
 0.745
rpmG
50S ribosomal protein L33; Belongs to the bacterial ribosomal protein bL33 family.
    
   0.731
rplV
50S ribosomal protein L22; This protein binds specifically to 23S rRNA; its binding is stimulated by other ribosomal proteins, e.g. L4, L17, and L20. It is important during the early stages of 50S assembly. It makes multiple contacts with different domains of the 23S rRNA in the assembled 50S subunit and ribosome (By similarity).
  
 
   0.700
rsfS
Ribosomal silencing factor RsfS; Functions as a ribosomal silencing factor. Interacts with ribosomal protein L14 (rplN), blocking formation of intersubunit bridge B8. Prevents association of the 30S and 50S ribosomal subunits and the formation of functional ribosomes, thus repressing translation.
   
 
 0.672
rplW
50S ribosomal protein L23; One of the early assembly proteins it binds 23S rRNA. One of the proteins that surrounds the polypeptide exit tunnel on the outside of the ribosome. Forms the main docking site for trigger factor binding to the ribosome; Belongs to the universal ribosomal protein uL23 family.
    
   0.658
rplC
50S ribosomal protein L3; One of the primary rRNA binding proteins, it binds directly near the 3'-end of the 23S rRNA, where it nucleates assembly of the 50S subunit.
    
   0.656
rplM
50S ribosomal protein L13; This protein is one of the early assembly proteins of the 50S ribosomal subunit, although it is not seen to bind rRNA by itself. It is important during the early stages of 50S assembly.
   
   0.655
rplY
50S ribosomal protein L25; This is one of the proteins that binds to the 5S RNA in the ribosome where it forms part of the central protuberance. Belongs to the bacterial ribosomal protein bL25 family. CTC subfamily.
    
   0.651
rplS
50S ribosomal protein L19; This protein is located at the 30S-50S ribosomal subunit interface and may play a role in the structure and function of the aminoacyl-tRNA binding site.
    
   0.648
rplE
50S ribosomal protein L5; This is 1 of the proteins that binds and probably mediates the attachment of the 5S RNA into the large ribosomal subunit, where it forms part of the central protuberance. In the 70S ribosome it contacts protein S13 of the 30S subunit (bridge B1b), connecting the 2 subunits; this bridge is implicated in subunit movement. Contacts the P site tRNA; the 5S rRNA and some of its associated proteins might help stabilize positioning of ribosome-bound tRNAs.
    
   0.648
Your Current Organism:
Pseudomonas fluorescens
NCBI taxonomy Id: 294
Other names: ATCC 13525, Bacillus fluorescens, Bacillus fluorescens liquefaciens, Bacterium fluorescen, CCEB 546, CFBP 2102, CIP 69.13, DSM 50090, IAM 12022, IFO 14160, JCM 5963, Liquidomonas fluorescens, NBRC 14160, NCCB 76040, NCIB 9046, NCIB:9046, NCIMB 9046, NCTC 10038, NRRL B-14678, P. fluorescens, Pseudomonas sp. AU2390, Pseudomonas sp. BZ64, Pseudomonas sp. FY32, Pseudomonas sp. HSA2/2016, Pseudomonas sp. HSA3/2016, Pseudomonas sp. ISSDS-433, Pseudomonas sp. JCM 17186, Pseudomonas sp. JCM 2779, Pseudomonas sp. KH-20150KS3, Pseudomonas sp. LBUM223, Pseudomonas sp. LBUM636, Pseudomonas sp. SM2/2016, RH 818, VKM B-894, bacterium P1-1, strain M. Rhodes 28/5
Server load: low (34%) [HD]